首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K+ and glutamate released endogenous adenosine from superfused slices of rat parietal cortex. The absence of Ca2+ markedly diminished K+- but not glutamate-evoked adenosine release. Tetrodotoxin decreased K+- and glutamate-evoked adenosine release by 40 and 20%, respectively, indicating that release was mediated in part by propagated action potentials in the slices. Inhibition of ecto-5'-nucleotidase by alpha,beta-methylene ADP and GMP decreased basal release of adenosine by 40%, indicating that part of the adenosine was derived from the extracellular metabolism of released nucleotide. In contrast, inhibition of ecto-5'-nucleotidase did not affect release evoked by K+ or glutamate, suggesting that adenosine was released as such. Inhibition of glutamate uptake by dihydrokainate potentiated glutamate-evoked release of adenosine. Glutamate-evoked adenosine release was diminished 50 and 55% by the N-methyl-D-aspartate (NMDA) receptor antagonists, DL-2-amino-5-phosphonovaleric acid and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), respectively. The remaining release in the presence of MK-801 was diminished a further 66% by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione, suggesting that both NMDA and non-NMDA receptors were involved in glutamate-evoked adenosine release. Surprisingly, K+-evoked adenosine release was also diminished about 30% by NMDA antagonists, suggesting that K+-evoked adenosine release may be partly mediated indirectly through the release of an excitatory amino acid acting at NMDA receptors.  相似文献   

2.
The release of 3H-labeled purines at rest and during electrical stimulation was investigated in slices of rat cortex prelabeled with [3H]adenine and perfused with Krebs solution. A linear relationship was found between radioactivity efflux and stimulation frequency from 2.5 to 20 Hz. At frequencies of less than 2.5 Hz, no increase in radioactivity efflux was detected. The amount of tritium released per pulse increased with stimulation frequency up to 10 Hz and declined at 20 Hz. The tritium efflux from the slices at rest and at a stimulation frequency of 10 Hz, analyzed by HPLC with ultraviolet absorbance detection at 254 nm, consisted mostly of adenosine, inosine, and hypoxanthine. The 3H-labeled purine release evoked by 10-Hz stimulation increased with current intensity from 15 to 100 mA/cm2. At 20 mA/cm2, addition of 0.5 microM tetrodotoxin to the superfusing Krebs solution brought about a 98% decrease of 3H-labeled purine release. At higher current strength, the percentage of tetrodotoxin-sensitive-evoked tritium efflux was smaller. At 30 mA/cm2, 86% of the evoked release was tetrodotoxin sensitive. Under these stimulation conditions, tritium efflux showed a 69% decrease when the slices were superfused with calcium-free Krebs solution containing 0.5 mM EGTA. The muscarinic agonist oxotremorine (30 microM) significantly enhanced the 10-Hz-stimulated 3H-labeled purine release. The effect of oxotremorine was partially prevented by tetrodotoxin, was antagonized by atropine (1.5 microM), and was mimicked by addition of physostigmine (3.8 microM) to the superfusion fluid. Atropine alone did not affect the evoked release, and none of the drugs modified the basal tritium efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: To determine the functions of striatal adenosine A2a receptors in vivo, the effects of a selective agonist, 2-[4-(2-carboxyethyl)phenethylamino]-5'- N -ethylcarboxamidoadenosine hydrochloride (CGS 21680), and an antagonist, ( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837), on acetylcholine release were investigated in the striatum of awake freely moving rats using microdialysis. Intracerebroventricular injection of CGS 21680 (10 µg) increased acetylcholine release in striatum and KF17837 (30 mg/kg p.o.) antagonized the CGS 21680-induced acetylcholine elevation. To investigate the contribution of dopaminergic and GABAergic neurons on A2a receptor-mediated acetylcholine release, the effects of CGS 21680 were studied by using dopamine-depleted rats in the presence or absence of GABA antagonists. In the dopamine-depleted striatum, the intrastriatal application of CGS 21680 (0.3–30 µ M ) increased extracellular acetylcholine, which was significantly greater than that in normal striatum. The CGS 21680-induced elevation of acetylcholine release was still observed in the presence of GABA antagonists bicuculline (30 µ M ) and 2-hydroxysaclofen (100 µ M ) and was similar in both normal and dopamine-depleted striatum. These results suggest that A2a agonist stimulates acetylcholine release in vivo, and this effect of A2a agonist is modulated by dopaminergic and GABAergic neurotransmission.  相似文献   

4.
The endogenous levels of adenosine functionally linked to cyclic AMP systems in rat cerebral cortical slices are regulated by both adenosine deaminase and adenosine uptake systems. 2'-Deoxycoformycin (2'-DCF), an adenosine deaminase inhibitor, slightly increased basal, adenosine, and norepinephrine-elicited accumulations of cyclic AMP, whereas dipyridamole, an uptake inhibitor, had an even greater effect on cyclic AMP accumulations under the same conditions. Combinations of 2'-DCF and dipyridamole elicited a greater effect than either compound alone. Neither 2'-DCF nor dipyridamole significantly augmented accumulations of cyclic AP elicited by a depolarizing agent, veratridine, suggesting that the adenosine "released" during neuronal depolarization of brain slices is not as subject to inactivation by uptake or deamination as endogenous adenosine in control brain slices. The accumulation of cyclic AMP elicited by a combination of norepinephrine and veratridine was greater than additive. The response to a pure beta-adrenergic agonist, isoproterenol, was not potentiated by 2'-DCF, dipyridamole, or veratridine, consonant with minimal interaction of endogenous adenosine with beta-adrenergic systems.  相似文献   

5.
Synaptosomes, prepared from rat cerebral cortex and hippocampus, were preincubated with [methyl-3H]choline. The effect of adenosine, cyclohexyladenosine, N-ethylcarboxamide adenosine, 2'-deoxyadenosine, and oxotremorine on K+-evoked 3H efflux was investigated. High-voltage electrophoretic separation showed that in the presence of physostigmine, the K+-evoked 3H efflux from hippocampal synaptosomes was 90% [3H]acetylcholine and 10% [3H]choline. Adenosine (30 microM) and oxotremorine (100 microM) both decreased [3H]acetylcholine release from hippocampal synaptosomes. The effect was inversely proportional to the KCl concentration and disappeared at a KCl concentration of 50 mM. Cyclohexyladenosine was approximately 3,000 times more active than adenosine, whereas N-ethylcarboxamide adenosine and 2'-deoxyadenosine were inactive. This indicates that A1 adenosine receptors were involved in the inhibitory effect. Caffeine antagonized the adenosine effect, and at a concentration of 100 microM, it stimulated [3H]acetylcholine efflux. The inhibitory effect of oxotremorine was as great in cortical as in hippocampal synaptosomes. In contrast, adenosine was much less active in cortical than in hippocampal synaptosomes. When inhibitory concentrations of adenosine and oxotremorine were added together into the incubation medium, the effect of adenosine on [3H]acetylcholine release was consistently reduced. An interaction between muscarinic and A1 adenosine presynaptic receptors at a common site modulating acetylcholine release can be assumed.  相似文献   

6.
Stimulation of cyclic AMP (cAMP) accumulation in rat cortex slices by 1 microM forskolin (F) was markedly reduced (96%) by treatment with adenosine deaminase (ADA). The effect of ADA was progressively less at higher concentrations of F, but still inhibited the response by 50% at 100 microM F. ADA-mediated inhibition of the cAMP response to 1 microM F was completely reversed by 5 microM 2-chloroadenosine (CA), an ADA-resistant analogue. Stimulation by F (controls) and F plus CA (ADA treated) in cortex slices was significantly inhibited by 200 microM caffeine (CAF) and by 10 microM 8-phenyltheophylline. cAMP accumulation in ADA-treated cortex slices stimulated with CA at concentrations from 5 to 100 microM was markedly enhanced by 1 microM F. Neither ADA treatment nor 200 microM CAF significantly affected cAMP accumulation in slices stimulated by 1 microM vasoactive intestinal polypeptide or adenylate cyclase in membranes stimulated by 1 microM F. CAF (1 mM) did not significantly increase basal cAMP levels in cortex slices, whereas 1 mM 3-isobutyl-1-methylxanthine caused a significant 80% increase and 100 microM rolipram enhanced cAMP levels by 4.5-fold. F-stimulated cAMP accumulation (1 microM) in cortex slices was inhibited 98% by 1 mM CAF and 49% by 1 mM 3-isobutyl-1-methylxanthine, and was enhanced 2.5-fold by 100 microM rolipram. These data have been interpreted to indicate that the stimulation of cAMP accumulation in rat cortex slices by 1 microM F is predominantly due to synergistic interaction with endogenous adenosine and that the inhibition of this response by CAF is largely due to blockade of adenosine receptors.  相似文献   

7.
Rat brain striatum slices were incubated with [3H]choline, perfused with a physiological buffer, and stimulated by perfusion with a K+-enriched buffer for 2 min. The tritium overflow evoked by K+ was decreased by 5-hydroxytryptamine (serotonin, 5-HT) (maximal inhibition 10(-6) M). This effect of 5-HT was mimicked by several agonists (5-methoxytryptamine, N,N-dimethyl-tryptamine, bufotenin) and blocked by serotonergic antagonists (methiothepin, methysergide, cinanserin) but not by haloperidol; methiothepin and methysergide alone slightly increased the K+-evoked overflow of tritium (3H). Inhibition of the tritium release by 5-HT was not suppressed in the presence of tetrodotoxin (TTX) (10(-6) M). These results suggest that 5-HT tonically inhibits acetylcholine (ACh) release from striatal cholinergic neurons by acting on a presynaptic receptor localized on cholinergic terminals.  相似文献   

8.
L-Glutamate (10 microM-1 mM) released endogenous adenosine from rat cortical synaptosomes. Studies with excitatory amino acid antagonists, (+)-5-methyl-16,11,dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), 6,7-dinitroquinoxaline-2,3-dione (DNQX), Mg2+, and agonists N-methyl-D-aspartate (NMDA), kainate, and quisqualate, indicated that this release was not receptor mediated. D,L-2-Amino-4-phosphonobutanoic acid (APB) also did not affect glutamate-evoked adenosine release. Inhibition of glutamate uptake by dihydrokainate or replacement of extracellular Na+ blocked glutamate-evoked adenosine release. D-aspartate, which is a substrate for the glutamate transporter but is not metabolized, also released adenosine, suggesting that release was due to amino acid transport and not to its subsequent metabolism. D-Glutamate, a relatively poor substrate for the transporter, was correspondingly less potent than L-glutamate at releasing adenosine. Glutamate-evoked adenosine release was not Ca2+ dependent or tetrodotoxin sensitive and did not appear to occur on the bidirectional nucleoside transporter. Inhibition of ecto-5'-nucleotidase virtually abolished glutamate-evoked adenosine release, indicating that adenosine was derived from extracellular metabolism of released nucleotide(s). However, L-glutamate did not release ATP and did not appear to release cyclic AMP. Therefore, transport of glutamate into presynaptic terminals releases some other nucleotide which is converted extracellularly to adenosine. This adenosine could act at P1-purinoceptors to modulate glutamatergic neurotransmission.  相似文献   

9.
Microvessels isolated from rat cerebral cortex consist mainly of capillaries (greater than 85%). Fresh, intact microvessel preparations have been analyzed by radioligand binding techniques for muscarinic receptors. Scatchard analysis of specific quinuclidinyl benzilate (QNB) binding indicates that microvessels possess a large number of muscarinic sites (914 fmol/mg protein) of high affinity (KD = 0.034 nM). The association and dissociation rate constants (0.37 min-1 nM-1 and 0.0067 min-1, respectively) yield an equilibrium KD of 0.018 nM. Displacement of [3H]QNB by muscarinic ligands and control substances is typical of muscarinic receptors. The results indicate that cerebral microvessels possess a large population of muscarinic receptors.  相似文献   

10.
This study investigates the effects of different muscarinic receptor agonists on extracellular glutamate and aspartate concentrations in the rat neostriatum. In vivo intracerebral perfusions were undertaken in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intrastriatal perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant decrease in extracellular [ASP] (45% of decrease) but not in extracellular [GLU]. These effects were blocked by scopolamine, a M1-M2 muscarinic receptor antagonist. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant decrease in extracellular [ASP] (40% of decrease) but not in extracellular [GLU]. The effects of McN-A-343 on extracellular [ASP] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that the decrease in extracellular [ASP] could be mediated, at least in part, by M1 muscarinic receptor activation in the rat neostriatum.  相似文献   

11.
Abstract: Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino acids and purines was amplified when slices were exposed to 8-cyclopentyl-1,3-dipropylxanthine (a selective A1 adenosine receptor antagonist), (+)-α-methyl-4-carboxyphenylglycine [a mixed antagonist of metabotropic glutamate receptors (mGluRs)], or (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (a selective antagonist of class II mGluRs). In contrast, 2-chloro-N6-cyclopentyladenosine (CCPA; a selective A1 receptor agonist) or (2S,1R,2R,3R)-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; a selective agonist of class II mGluRs) reduced the evoked release of excitatory amino acids and purines. CCPA and DCG-IV also reduced the increase in cyclic AMP formation induced by either forskolin or electrical stimulation in hippocampal slices. The inhibitory effect of CCPA and DCG-IV on release or cyclic AMP formation was less than additive. We conclude that the evoked release of excitatory amino acids and purines is under an inhibitory control by A1 receptors and class II mGluRs, i.e., mGluR2 or 3, which appear to operate through a common transduction pathway. In addition, although these receptors are activated by endogenous adenosine and glutamate, they can still respond to pharmacological agonists. This provides a rationale for the use of A1 or class II mGluR agonists as neuroprotective agents in experimental models of excitotoxic neuronal degeneration.  相似文献   

12.
Abstract: In rat cerebral cortical slices, the 1-aminocyclopentyl-1 S ,3 R -dicarboxylate (1 S ,3 R -ACPD) isomer of the selective metabotropic excitatory amino acid agonist ACPD inhibited forskolin-stimulated cyclic AMP (cAMP) accumulation in a concentration-dependent manner with a maximal inhibition of 51 ± 3% and a half-maximally effective concentration of 8.8 ± 3.4 μ M . Similarly, 1 R ,3 S -ACPD inhibited the forskolin response in a concentration-dependent manner, but with an inhibition of 80 ± 5% at 3 μ M . In addition to inhibiting forskolin-stimulated cAMP levels, 1 S ,3 R -ACPD, but not 1 R ,3 S -ACPD, enhanced the cAMP response to A2b adenosine receptor activation. In the presence of 1.2 U/ml of adenosine deaminase (included to reduce the contribution of endogenous adenosine), the efficacy of 1 S ,3 R -ACPD was increased (88 ± 3% inhibition), but the potency was unchanged. The adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine also increased the inhibitory effect of 100 μ M 1 S ,3 R -ACPD, from 57 ± 1 to 78 ± 5%. These results indicate that endogenous adenosine plays an important role in regulating the apparent efficacy of 1 S ,3 R -ACPD inhibition of forskolin-stimulated cAMP accumulation in rat cerebral cortical slices and that previous studies in rat hippocampus and hypothalamus in the absence of added adenosine deaminase may have underestimated the efficacy of this compound.  相似文献   

13.
Abstract: Excitatory amino acids, acting at both N methyl- d -aspartate (NMDA) and non-NMDA receptors, release the inhibitory neuromodulator adenosine from superfused rat cortical slices. This study was initiated to investigate the possible purinergic sources and mechanisms of release for the adenosine release evoked by NMDA and non-NMDA receptor activation. Inhibition of the bidirectional nucleo-side transporter with dipyridamole greatly enhanced adenosine release evoked by glutamate, NMDA, kainate, and ( RS -α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Inhibition of ecto -5'-nucleotidase with α,β-methylene ADP and GMP had no effect on either kainateor AMPA-evoked adenosine release, but it decreased glutamate- and NMDA-evoked adenosine release by 23 and 68%, respectively. A similar inhibition of NMDA-evoked adenosine release was observed with α,β-methylene ADP alone, indicating that the inhibitory effect was not due to the reported competitive inhibition of NMDA receptors by GMP. Finally, NMDA-evoked adenosine release, but not kainate- or AMPA-evoked release, was Ca2+ dependent. These results indicate that activation of non-NMDA receptors releases adenosine per se in a Ca2+-independent manner. In contrast, NMDA receptor activation releases primarily a nucleotide that is subsequently converted extracellularly to adenosine; in this case, release is Ca2+ dependent. Although neither NMDA- nor non-NMDA-evoked adenosine release occurs via the nucleoside transporter, this transporter does appear to be a major route for removal of adenosine from the extracellular space.  相似文献   

14.
Abstract: The extracellular concentration of inositol 1,4,5-trisphosphate (IP3) has been monitored in the ventral hippocampus of the anesthetized rat by using a microdialysis technique coupled to a radioreceptor assay. Three hours after the implantation of the cannula, basal extracellular concentration of IP3 (corrected for a 9% recovery) was 71 n M (0.39 pmol/60-µl fraction) and remained stable for at least 5 h. Local infusion of carbachol for 60 min caused a significant concentration-related increase in extracellular IP3 levels (0, 24, and 57% at 1, 50, and 100 µ M , respectively). Acetylcholine (100 µ M ) and muscarine (100 µ M ) increased IP3 outflow by 40 and 42%, respectively. The effect of carbachol was fully prevented by coinfusion of 10 µ M pirenzepine and reduced by 1 µ M tetrodotoxin indicating that the carbachol response is mediated by neuronal muscarinic receptors. These data demonstrate the feasibility of using microdialysis and a radioreceptor assay to measure IP3 in the extracellular space. This approach could prove useful for the study of the in vivo operation of muscarinic and, by extension, a number of receptors coupled to phosphoinositide turnover.  相似文献   

15.
Presynaptic muscarinic and nicotinic receptors in the cerebral cortex reportedly inhibit and increase acetylcholine (ACh) release, respectively. In this study, we investigated whether these receptors reside on cholinergic nerve terminals projecting to the cerebral cortex from the nucleus basalis magnocellularis (nbm). Adult male rats received unilateral infusions of ibotenic acid (5 micrograms/1 microliter) in the nbm. Two weeks later, cerebral cortical cholinergic markers (choline acetyltransferase activity, high-affinity choline uptake, and coupled ACh synthesis) were significantly reduced in synaptosomes prepared from the lesioned hemispheres compared to contralateral controls. The depolarization-induced release of [3H]ACh from these synaptosomes was also reduced in the lesioned hemispheres, reflecting the reduced synthesis of transmitter. However, the nbm lesions had no effect on the inhibition of release induced by 100 microM oxotremorine. Synaptosomal [3H]ACh release was not altered by nicotine or the nicotinic agonists anabaseine and 2-(3-pyridyl)-1,4,5,6-tetrahydropyrimidine. Nicotine (10-100 microM) did increase [3H]ACh release in control and lesioned hemispheres in cortical minces, but to a similar extent. These results suggest that neither muscarinic nor nicotinic receptors modulating ACh release reside on nbm-cholinergic terminals.  相似文献   

16.
Abstract: Primary embryonic cortical cultures were used as an in vitro model to evaluate the influence of glia on developmental expression of α7-type nicotinic acetylcholine receptors in rat brain. In cells cultured in serum-containing medium without mitotic inhibitors, specific 125I-α-bungarotoxin binding to α7-type nicotinic receptors was maximal 4–8 days after plating. Treatment with 5'-fluorodeoxyuridine (80 µ M ) from 1 to 3 days in vitro significantly reduced glial proliferation and concomitantly increased 125I-α-bungarotoxin binding, whereas plating onto a glial bed layer decreased binding. There was no significant binding to pure glial cultures. Treatment-induced changes in neuronal binding resulted from alterations in receptor density, with no change in affinity. 5'-Fluorodeoxyuridine treatment also increased cellular expression of α7 receptor mRNA but had no effect on N -[3H]methylscopolamine binding to muscarinic receptors. Glial conditioned medium decreased 125I-α-bungarotoxin binding in both control and 5'-fluorodeoxyuridine-treated cultures, suggesting the release of a soluble factor that inhibits α7-type nicotinic receptor expression. An additional mechanism of glial regulation may involve removal of glutamate from the surrounding medium, as added glutamate (200 µ M ) increased 125I-α-bungarotoxin binding in astrocyte-poor cultures but not in those that were astrocyte enriched. These results suggest that glia may serve a physiological role in regulating α7-type nicotinic receptors in developing brain.  相似文献   

17.
It had previously been thought that muscarinic cholinergic receptors utilize an influx of extracellular calcium for activation of adrenomedullary catecholamine secretion. However, it has recently been demonstrated that muscarinic receptors on isolated adrenal chromaffin cells can elevate cytosolic free calcium levels in a manner independent of extracellular calcium, presumably by mobilizing intracellular calcium stores. We now demonstrate that muscarinic receptor-mediated catecholamine secretion from perfused rat adrenal glands can occur under conditions of extracellular calcium deprivation that are sufficient to block both nicotine- and electrically stimulated release. Three independent conditions of extracellular calcium deprivation were used: nominally calcium-free perfusion solution (no calcium added), EGTA-containing calcium-free perfusion solution, and perfusion solution containing the calcium channel blocker verapamil. Secretion was evoked from the perfused glands by either transmural electrical stimulation or injection of nicotine or muscarine into the perfusion stream. Each condition of calcium deprivation was able to block nicotine- and electrically stimulated catecholamine release in an interval that left muscarine-evoked release largely unaffected. The above results demonstrate that muscarine-evoked catecholamine secretion from perfused rat adrenal glands can occur in the absence of extracellular calcium, presumably by mobilization of intracellular calcium. The latter may be due to muscarinic receptor-mediated generation of inositol trisphosphate.  相似文献   

18.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

19.
Abstract: Adenosine, a putative inhibitory transmitter or modulator in the brain, is rapidly transported by rat cerebral cortical synaptosomes. The uptake may represent a facilitated diffusion process, which is saturable and temperature-dependent. In this study, the uptake process was very rapid, reaching completion within 60 s of incubation at 37°C, and had an apparent Km value of 0.9μM and a Vmax value of 5.26 pmol/mg protein/ 30 s. Over 70% of the adenosine taken up remained unchanged, whereas 14% was metabolized to inosine. Twelve percent of the adenosine was converted to nucleotides. Rapid uptake of adenosine into rat cerebral cortical synaptosomes was partially inhibited by replacing Na+ with choline chloride in the medium. Ca2+ ion is important for the uptake process, as inhibition of adenosine uptake occurs in the presence of either Co2- or EGTA. Rapid uptake of adenosine is apparently mediated by a nucleoside carrier, a conclusion based on its inhibition by a variety of purine and pyrimidine nucleosides. Uptake was inhibited by dipyridamole, hexobendine, papaverine, flurazepam, and morphine. Over 60% of the adenosine taken up by the rapid uptake system (30 s) was released by depolarizing agents. In contrast, only 30% of the adenosine taken up during a 15-min incubation period was released under the same conditions. [3H]Adenosine was the predominant purine released in the presence or absence of depolarizing agents. The basal and KCl-evoked release mechanisms were found to be at least partially Ca2+-dependent, however, the release of adenosine by veratridine was increased in the presence of EGTA. This finding is in agreement with the reported Ca2+-independent release of ATP from brain synaptosomes. The present findings suggest that there are at least two functional pools of adenosine in synaptosomes. Adenosine taken up by different uptake systems may be destined for different uses (metabolism or release) in the neuron.  相似文献   

20.
Abstract: To investigate the release of adenine compounds from defined neuronal pathways, we employed a hippocampal slice preparation in which a selective-loading of the releasable pools was achieved in vivo with the aid of axonal transport. By injecting radioactive adenosine stereotaxically into the entorhinal cortex, the major afferent system to the dentate gyrus (the perforant path) was loaded within 20–36 h, at which time the rats were killed and hippocampal slices were prepared. The efflux of radioactive material, as recovered from the perfusate and measured in a scintillation counter, was found to be significantly increased in response to electrophysiologically controlled stimulation of the perforant path but not to stimulation of an alternative fiber tract, the fimbria. These findings provide supportive and more direct evidence for an activation-coupled release of adenosine derivatives from presynaptic sites in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号