首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An obligate intracellular parasite infecting Ectocarpus spp. and other filamentous marine brown algae is described. The pathogen forms an unwalled multinucleate syncytium (plasmodium) within the host cell cytoplasm and causes hypertrophy. Cruciform nuclear divisions occur during early development. Mature plasmodia become transformed into single sporangia, filling the host cell completely, and then cleave into several hundred spores. The spores are motile with two unequal, whiplash-type flagella inserted subapically and also show amoeboid movement. Upon settlement, cysts with chitinous walls are formed. Infection of host cells is accomplished by means of an adhesorium and a stachel apparatus penetrating the host cell wall, and injection of the cyst content into the host cell cytoplasm. The parasite is characterized by features specific for the plasmodiophorids and is described as a new genus and species, Maullinia ectocarpii.  相似文献   

2.
A new species of microsporidian, Trichonosema algonquinensis, is described from a freshwater bryozoan, Pectinatella magnifica from Ontario, Canada. The parasite develops in epithelial cells and appears as white, spherical masses throughout the tissues. Trichonosema algonquinensis is diplokaryotic, diploblastic and undergoes development in direct contact with the cytoplasm of the host cell. Mature spores are ovoid, tapered at one end, and measure 8.5 +/- 0.3 x 4.4 +/- 0.1 microm. The polar filament is wound in 20 to 23 helical coils. Although the parasite resembles T. pectinatellae described from the same host in Michigan and Ohio, it differs in the length of the spore and number of coils of the polar filament. Analysis of 16S rDNA by maximum likelihood, parsimony and Baysian inference, complements the morphological data in supporting the placement of T. algonquinensis as a sister species of T. pectinatellae.  相似文献   

3.
We describe the microsporidian Amazonspora hassar n. gen., n. sp. from the gill xenomas of the teleost Hassar orestis (Doradidae) collected in the estuarine region of the Amazon River. The parasite appeared as a small whitish xenoma located in the gill filaments near the blood vessels. Each xenoma consisted of a single hypertrophic host cell (HHC) in the cytoplasm of which the microsporidian developed and proliferated. The xenoma wall was composed of up to approximately 22 juxtaposed crossed layers of collagen fibers. The plasmalemma of the HHC presented numerous anastomosed, microvilli-like structures projecting outward through the 1-3 first internal layers of the collagen fibrils. The parasite was in direct contact with host cell cytoplasm in all stages of the cycle (merogony and sporogony). Sporogony appears to divide by plasmotomy, giving rise to 4 uninucleate sporoblasts, which develop into uninucleate spores. The ellipsoidal spores measured 2.69 +/- 0.45 x 1.78 +/- 0.18 microm, and the wall measured approximately 75 nm. The anchoring disk of the polar filament was subterminal, being shifted laterally from the anterior pole. The polar filament was arranged into 7-8 coils in a single layer in the posterior half of the spore, surrounding the posterior vacuole. The polaroplast surrounded the uncoiled portion of the polar filament, and it was exclusively lamellar. The spores and different life-cycle stages were intermingled within the cytoplasm of the HHC, surrounding the central hypertrophic deeply branched nucleus. The ultrastructural morphology of this microsporidian parasite suggests the erection of a new genus and species.  相似文献   

4.
Goff LJ  Coleman AW 《The Plant cell》1995,7(11):1899-1911
The transfer of a nucleus into a cytoplasm of a genetically foreign cell and its subsequent multiplication in the cytoplasm of this cell characterize most parasitic red algal species and their interactions with specific red algal hosts. Nuclei enter the host's cytoplasm upon cell fusion of parasite and host cell; here, they replicate, are spread to contiguous host cells, and ultimately are packaged into spores that reinfect other host thalli. In this study, we examined whether the proplastids and mitochondria that occur in these red algal adelphoparasites are acquired from their host or whether they are unique to the parasite and are brought into the host along with the parasite nucleus. To establish their origins and fates, plastid and mitochondrial restriction fragment length polymorphisms (RFLPs) of parasite cells were compared with those of their host plastid and mitochondrial DNA in three host and parasite pairs. For plastids, no RFLP differences were found between hosts and parasites, supporting an earlier conclusion, based on microscopic studies, that the proplastids of parasites are acquired from their hosts. For mitochondria, characteristic RFLP differences were detected between host and parasite for two of the pairs of species but not for the third. Evidence of the evolutionary difference between hosts and their parasites was shown by RFLP differences between nuclear ribosomal repeat regions.  相似文献   

5.
ABSTRACT. Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life‐cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle‐I) and in the nuclei of epidermal cells (Cycle‐II), respectively. Cycle‐I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle‐II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.  相似文献   

6.
A fish-infecting Microsporidia Potaspora morhaphis n. gen., n. sp. found adherent to the wall of the coelomic cavity of the freshwater fish, Potamorhaphis guianensis, from lower Amazon River is described, based on light microscope and ultrastructural characteristics. This microsporidian forms whitish xenomas distinguished by the numerous filiform and anastomosed microvilli. The xenoma was completely filled by several developmental stages. In all of these stages, the nuclei are monokaryotic and develop in direct contact with host cell cytoplasm. The merogonial plasmodium divides by binary fission and the disporoblastic pyriform spores of sporont origin measure 2.8+/-0.3 x 1.5+/-0.2 microm. In mature spores the polar filament was arranged into 9-10 coils in 2 layers. The polaroplast had 2 distinct regions around the manubrium and an electron-dense globule was observed. The small subunit, intergenic space and partial large subunit rRNA gene were sequenced and maximum parsimony analysis placed the microsporidian described here in the clade that includes the genera Kabatana, Microgemma, Spraguea and Tetramicra. The ultrastructural morphology of the xenoma, and the developmental stages including the spores of this microsporidian parasite, as well as the phylogenetic analysis, suggest the erection of a new genus and species.  相似文献   

7.
8.
A parasite of the marine fish Vincentia conspersa was examined by light microscopy and transmission electron microscopy. This parasite develops in the subcutaneous tissue of the body and fins, forming spherical xenomas about 1-2 mm in diameter surrounded by a layer of amorphous material. The observed characteristics of the new parasite are in line with those of the other Glugea species; merogony takes place in the outer zone of the cytoplasm of the host cell, sporogony takes place in sporophorous vesicles, and mature spores are located in the central part of the xenoma. Meronts were cylindrical uninucleate or occasionally triradiate multinucleate, with plasmodia in direct contact with the host cytoplasm. Sporogonic plasmodia divided by multiple cleavage to produce sporoblast mother cells, which after binary fission became sporoblasts. Two types of spores were recognized, both uninucleate, i.e., ovoid or slightly ovoid microspores with a mean size of 5.1 x 2.2 microm and much less frequent as elongated oval macrospores with a mean size of 8.9 x 3.1 microm. The polar tube has between 12 and 14 coils arranged in 1, 2, or 3 layers. Taken together, these characteristics suggest that this microsporidian infecting V. conspersa is a new species of Glugea, which we have named Glugea vincentiae.  相似文献   

9.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

10.
This paper presents, for the first time, documentation by detailed scanning electron microscopy of the life cycle of microsporidia of the genus Encephalitozoon. Phase 1 is represented by the extracellular phase with mature spores liberated by the rupture of host cells. To infect new cells the spores have to discharge their polar filament. Spores with everted tubes show that these are helically coiled. When the polar tubules have started to penetrate into a host cell they are incomplete in length. The infection of a host cell can also be initiated by a phagocytic process of the extruded polar filament into an invagination channel of the host cell membrane. After the penetration process, the tube length is completed by polar tube protein which passes through the tube in the shape of swellings. A completely discharged polar tube with its tip is also shown. The end of a polar tube is normally hidden in the cytoplasm of the host cell. After completion of the tube length the transfer of the sporoplasm occurs and phase 2 starts. Phase 2 is the proliferative phase, or merogony, with the intracellular development of the parasite that cannot be documented by scanning electron microscopy. The subsequent intracellular phase 3, or sporogony, starts when the meronts transform into sporonts, documented as chain-like structures which subdivide into sporoblasts. The sporoblasts finally transform directly into spores which can be seen in their host cell, forming bubble-like swellings in the cell surface.  相似文献   

11.
Two whitish elongate cysts in the left pectoral fin of Trichomycterus sp. (Osteichthyes, Trichomycteridae) were packed with Dermocystidium sp. spores. The spores were spherical and had a large PAS positive central refractile body, the cytoplasm being restricted to a narrow peripheral layer containing the nucleus. The cysts were surrounded by a thin homogeneous wall of parasite origin, and there was no encapsulation of the cysts by host tissue.  相似文献   

12.
Trachipleistophora anthropophthera n. sp., was found at autopsy in the brain of one and in the brain, kidneys, pancreas, thyroid, parathyroid, heart, liver, spleen, lymph nodes, and bone marrow of a second patient with AIDS. The parasite is similar to the recently described T. hominis Hollister, Canning, Weidner, Field. Kench and Marriott, 1996, in having isolated nuclei, meronts with a thick layer of electron dense material on the outer face of their plasmalemma and sporogony during which spores are formed inside a thick-walled sporophorous vesicle. In contrast to T. hominis , this species is dimorphic as it forms two kinds of sporophorous vesicles and spores: Type I-round to oval polysporous sporophorous vesicle. 7-10 μm in size, usually with eight spores (3.7 × 2.0 μm), thick endospores, subterminal anchoring disc and anisofilar polar filaments forming seven thicker and two thinner terminal coils. This type of sporophorous vesicle is associated with 25-30 nm filaments extending into the host cell cytoplasm. Type II—smaller, bisporous sporophorous vesicle (4-5 times 2.2-2.5 μm) with two, nearly round, thin-walled spores, 2.2-2.5 × 1.8-2.0 μm in size, having 4-5 isofilar coils. No outside filamentous elements are associated with the bisporous sporophorous vesicle. Both types of sporophorous vesicles were common in the infected brain tissue and could be found within the same cell. The newly described species, together with T. hominis and previously reported Pleistophora -like parasites from human muscle, likely represent a group of closely related human microsporidia.  相似文献   

13.
Sparrow , Frederick K. and Yamunga Lingappa . (U. Michigan, Ann Arbor.) Observations on chytridiaceous parasites of phanerogams. VIII. Urophlyctis (Physoderma) pluriannnlatus and U. majus. Amer. Jour. Bot. 47(3): 202—209. Illus. 1960.—Urophlyctis pluriannulatus, an obligate parasite of Sanicula spp., has an endobiotic phase which is strongly polycentric and produces small crateriform galls on the petioles and blades of the host leaves. The agent accomplishing infection is not known but is probably a zygote. The first cell of the parasite established in the host is the so-called “primary turbinate organ.” This becomes multinucleate, is somewhat pyriform and becomes multicellular by 2 methods: (1) by cleavage into peripheral segments; or (2) by division into cells, each with its own cell wall. Replication of the thallus is accomplished by the production of nucleated outgrowths bearing haustoria which elongate, become ribbon-like, somewhat roughened and lumened, and produce distally turbinate organs of a second order. Tertiary, etc. turbinate organs are produced in like manner. Resting spores usually form at the tip of an extremely short outgrowth from the apex of a turbinate organ. These bear a supra-equatorial crown of 7—10 branched haustoria. Rarely, monocentric thalli are formed, in which a single turbinate organ becomes converted into a resting spore. All nuclear division figures were intranuclear. The fungus produced marked enlargement of infected host cells and their nuclei, and caused division of neighboring cells. As development continues, lysis of the surrounding host walls takes place and a large cavity bearing a dense symplast and numerous host nuclei is formed, within which is the thallus of the parasite. At maturity, all traces of symplast and of fungus, except for resting spores, disappear. Urophlyctis majus, a parasite on leaves of Rumex orbiculatus, hitherto known only from its resting spore stage, has a pattern of development strikingly similar to that of U. pluriannulatus. Here, however, turbinate cells only form peripheral segments. Furthermore, the “hyphae” are smooth and without a lumen. Aside from size differences, the mature thallus with resting spores, unbranched (not branched) haustorial tufts, etc. is like that of the Sanicula parasite. The galls produced were compartmentalized, dark red to black, usually surrounded by a reddish zone, and early dropped from the leaf. No undoubted evidence of the epibiotic gametangial phase was found in either species.  相似文献   

14.
A new species of a microsporidan, Abelspora portucalensis, was found in the hepatopancreas of Carcinus maenas, forming white xenomas. Each xenoma seems to consist of an aggregate of hypertrophic host cells in which the parasite develops and proliferates. This cytozoic microsporidan being characterized by one uninucleate schizont giving rise to two sporonts, each originating two sporoblasts, resulting in two spores within a persistent sporophorous vacuole (pansporoblast) should be included in a new family Abelsporidae. In fresh smears most spores were 3.1–3.2 μm long and 1.2–1.4 μm wide. Fixed, stained, and observed in SUS mature spores measured 3.1 ± 0.08 × 1.3 ± 0.06 μm (n = 25 measurements). Spore cytoplasm was dense and granular, polyribosomes were arranged in helicoidal tape form. The polar filament was anisofilar and consisted of a single coil with 5–6 turns. The anchoring disc and and the anterior zone of the filament are surrounded by the polaroplast composed of two usual zones. In the anterior zone, the membrane of the polar filament is in continuity with the membranes of the polaroplast. The appearance of a microsporidan with described nuclear divisions in life cycle, spores shape and size, polaroplast and polar filament morphology and identity of the host suggests that we may erect a new genus Abelspora and a new species A. portucalensis (Portugal = Portucalem).  相似文献   

15.
Summary The fine structure of erythrocytic stages of Plasmodium knowlesi was compared with that of the same parasite isolated from its host cell by a saponin technique. Rhesus monkeys experimentally infected with Plasmodium knowlesi were the source of parasitized red cells. The erythrocytic stages of this Plasmodium showed all the organelles described in other mammalian forms; the nucleus lacked a typical nucleolus but contained a cluster of granules. P. knowlesi did not have protozoan-type mitochondria as do the avian and reptilian forms, but had double-membrane-bounded bodies as observed in other mammalian malarial parasites.The isolation procedure caused a slight swelling of the parasite, but in general, the structure and structural relationships of the parasite were preserved. However, the isolation technique gave a new insight into the connection of the host cell cytoplasm with the large, so-called food vacuoles of the parasite. The parasite freed from its host cell showed clear spaces where the large vacuoles had been. The content of these vacuoles had been removed together with the red cell cytoplasm. As the nature of the isolation procedure precluded any disruption of the parasite itself, these findings support our view that the vacuoles are not true food vacuoles. If these were true food vacuoles, they would be completely enclosed by a parasite membrane within the parasite cytoplasm. However, we have demonstrated that they represent extensions of host cell cytoplasm in direct communication with the rest of the red cell. The outer membrane surrounding the intra-erythrocytic parasites disappeared after isolation of the parasite from the host cell. This strongly suggested that the outer membrane is of host cell origin. The budding process of the merozoites from a schizont was also described and discussed.This paper is contribution No. 558 from the Army Research Program on Malaria and was supported in part by Research Grant AI 08970-01 from the United States Public Health Service.  相似文献   

16.
The fine structure of the intercellular hyphae of the obligate parasite Albugo candida infecting radish does not differ markedly from that described previously for cells of Peronospora manshurica. The stalked, capitate haustoria do not contain nuclei and are packed with mitochondria and lomasomes. The fungal plasma membrane and cell wall are continuous from the intercellular hypha throughout the haustorium except that there is no evidence of fungal cell wall around a portion of the haustorial stalk proximal to the haustorial head. Within the vacuolate host mesophyll cell, the haustorium is always surrounded by host plasma membrane and with at least a thin layer of host cytoplasm. The host cell wall invaginates at the point of haustorial penetration to form a short sheath around the region of penetration, but normally there is no host cell wall around the balance of the haustorium. About 1% of the haustoria observed were necrotic, and these were invariably walled-off completely from host cytoplasm by host cell wall. An amorphous, moderately electron-dense encapsulation lies between the haustorium proper and the host plasma membrane and extends into the penetration region between the sheath and the fungal cell wall. Invaded host cells contain more ribosomal-rich ground cytoplasm than uninfected cells. Glandular-like systems of tubules and connecting vesicles are often numerous in host cytoplasm in the vicinity of haustorial heads. These tubules open into the encapsulation, their limiting unit membranes being continuous with the host plasma membrane. We suggest that these represent a secretory mechanism of the host specifically induced by the parasite.  相似文献   

17.
A novel microsporidian parasite is described, which infects the crustacean host Gammarus duebeni. The parasite was transovarially transmitted and feminised host offspring. The life cycle was monomorphic with three stages. Meronts were found in host embryos, juveniles, and in the gonadal tissue of adults. Sporoblasts and spores were restricted to the gonad. Sporogony was disporoblastic giving rise to paired sporoblasts, which then differentiated to form spores. Spores were not found in regular groupings and there was no interfacial envelope. Spores were approximately 3.78 x 1.22 microns and had a thin exospore wall, a short polar filament, and an unusual granular polaroplast. All life cycle stages were diplokaryotic. A region from the parasite small subunit ribosomal RNA gene was amplified and sequenced. Phylogenetic analysis based on these data places the parasite within the genus Nosema. We have named the species Nosema granulosis based on the structure of the polaroplast.  相似文献   

18.
Xenomas of the recently described new microsporidian species Loma myrophis parasitizing the gut tissue of the Amazonian fish Myrophis platyrhynchus (family Ophichthidae) were described by light- and transmission-electron microscopy. The xenoma consisted of a thin fibrillar wall that surrounded a hypertrophic host cell cytoplasm containing numerous microsporidian developmental stages and spores. Several spores showed different stages of natural extrusion of the polar tube. Numerous longitudinal and transverse sections of the extruded polar tubes were observed in developing life-cycle stages (spores excepted), the nucleus of hypertrophic host cell, the xenoma wall and surrounding fibroblasts. The extruded polar tubes were projected in all directions with no preferential orientation. These aspects suggested that autoinfection occurred within this xenoma.  相似文献   

19.
A double and triple immunogold labeling technique has been applied to demonstrate that several malarial antigens of the erythrocytic stages of Plasmodium falciparum are exported from the parasite into distinct compartments within the host cell cytoplasm. Multiple species of vesicles, each with specifically packaged contents, are consistent with a sorting function of vesicular structures in the Plasmodium infected erythrocyte. During schizogony, two parasite antigens, an S-antigen and a parasitophorous vacuole membrane antigen, QF 116, become packaged into such vesicles and are transported into the erythrocyte cytoplasm. At this stage of parasite development, host cell material is taken in through the parasitophorous vacuole membrane into the vacuolar space surrounding the parasite.  相似文献   

20.
ABSTRACT This is the first ultrastructural study of the development of a marine actinosporean and of a species belonging to the genus Sphaeractinomyxon Caullery & Mesnil, 1904. S. ersei n. sp. is described from a limnodriloidine oligochaete, Doliodrilus diverticulatus Erséus, 1985, from Moreton Bay. Queensland, Australia. Development is asynchronous, there being all stages from two-celled pansporoblasts through to mature spores present simultaneously within a host. Spores develop in groups of eight within pansporoblasts in the coelom and when mature are located also in the intestinal lumen. The primordial spore envelope and sporoplasm develop separately in the pansporoblast until the polar filament is formed within the polar capsule and the capsulogenic cell cytoplasm has begun to degrade. The sporoplasm then enters the spore through a separated valve junction. Mature spores are triradially symmetrical with three centrally located polar capsules and a single binucleate sporoplasm with about 46 germ cells. Swellings or projections of the epispore do not occur when spores exit the host and contact sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号