首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The room-temperature EPR characteristics of Photosystem II reaction center preparations from spinach, pokeweed and Chlamydomonas reinhardii have been investigated. In all preparations a light-induced increase in EPR Signal II, which arises from the oxidized form of a donor to P-680+, is observed. Spin quantitation, with potassium nitrosodisulfonate as a spin standard, demonstrates that the Signal II species, Z?, is present in approx. 60% of the reaction centers. In response to a flash, the increase in Signal II spin concentration is complete within the 98 μs response time of our instrument. The decay of Z? is dependent on the composition of the particle suspension medium and is accelerated by addition of either reducing agents or lipophilic anions in a process which is first order in these reagents. Comparison of these results with optical data reported previously (Diner, B.A. and Bowes, J.M. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoyunoglou, G., ed.), Vol. 3, pp. 875–883, Balaban, Philadelphia), supports the identification of Z with the P-680+ donor, D1. From the polypeptide composition of the particles used in this study, we conclude that Z is an integral component of the reaction center and use this conclusion to construct a model for the organization of Photosystem II.  相似文献   

2.
Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P680. TyrZ, part of the water-oxidizing complex, is a preferential fast electron donor while TyrD is a slow auxiliary donor to P680 +. We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of TyrD occurs via equilibrium with TyrZ ? at pH 4.7 and 6.3. At pH 8.5 direct TyrD oxidation by P680 + occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P680 +) on the ChlD1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.  相似文献   

3.
Gerald T. Babcock  Kenneth Sauer 《BBA》1975,376(2):329-344
Rapid light-induced transients in EPR Signal IIf (F?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F?+). At high potentials D is oxidized in the dark, and the (Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

4.
EPR measurements on inside-out thylakoids revealed that salt-washing, known to inhibit oxygen evolution and release a 23 and a 16 kDa protein, induced a Signal IIf and decreased the EPR signal from state S2. Readdition of the released 23 kDa protein restored the oxygen evolution and decreased the Signal IIf, but did not relieve the decrease in the state S2 signal. It is suggested that salt-washing inhibits the electron transfer from the oxygen-evolving site to Z, the physiological donor to P680. In inhibited photosystem II units lacking Signal IIf, Z+ is rapidly reduced, possibly by a modified S-cycle unable to evolve oxygen.  相似文献   

5.
《BBA》1985,808(1):171-179
The effects of selective removal of extrinsic proteins on donor side electron transport in oxygen-evolving PS II particles were examined by monitoring the decay time of the EPR signal from the oxidized secondary donor, Z+, and the amplitude of the multiline manganese EPR signal. Removal of the 16 and 24 kDa proteins by washing with 1 M NaCl inhibits oxygen evolution, but rapid electron transfer to Z+ still occurs as evidenced by the near absence of Signal IIf. The absence of a multiline EPR signal shows that NaCl washing induces a modification of the oxygen-evolving complex which prevents the formation of the S2 state. This modification is different from the one induced by chloride depletion of PS II particles, since in these a large multiline EPR signal is found. After removal of the 33 kDa protein with 1 M MgCl2, Signal IIf is generated after a light flash. Readdition of the 33 kDa component to the depleted membranes accelerates the reduction of Z+. Added calcium ions show a similar effect. These findings suggest that partial advancement through the oxygen-evolving cycle can occur in the absence of the 16 and 24 kDa proteins. The 33 kDa protein, on the other hand, may be necessary for such reactions to take place.  相似文献   

6.
The rise time, of Signal IIf and the decay time of P-680+ have been measured kinetically as a function of pH by using EPR. The Photosystem II-enriched preparations which were used as samples were derived from spinach chloroplasts, and they evolved oxygen before Tris washing. The onset kinetics of Signal IIf are in agreement, within experimental error, with the fast component of the decay of an EPR signal attributable to P-680+. The signal IIf rise kinetics also show good agreement with published values of the pH dependence of the decay of P-680+ measured optically (Conjeaud, H. and Mathis, P. (1980) Biochim. Biophys. Acta 590, 353–359). These results are consistent with a model where the species Z (or D1) responsible for Signal IIf is the immediate electron donor to P-680+ in tris-washed Photosystem II fragments.  相似文献   

7.
Two sites are distinguished for the oxidation of exogenous donors by Photosystem II in non-oxygen evolving chloroplasts. In the presence of lipophilic donors (e.g. phenylenediamine, benzidine, diphenylcarbazide), the rate for Signal IIf rereduction following a flash increases as the concentration of exogenous reductant increases. There is a decrease (20–40%) in Signal IIf magnitude accompanying donor addition at low (< 10?5M) concentrations, but the extent of the decrease does not change further with increasing donor concentration. Complementary polarographic experiments monitoring donor (phenylenediamine) oxidation show an increase in oxidation rate with increasing donor concentration.In the presence of the hydrophilic donor, Mn2+, the Signal IIf decay halftime remains constant with increasing Mn2+ concentration. However, the flash-induced Signal IIf magnitude progressively decreases with increasing Mn2+ concentration.These results are interpreted in terms of two competing paths for the reduction of P680+. In one path P680+ reduction is accompanied by the appearance of Signal IIf, and lipophilic donors subsequently rereduce the Signal IIf species in a series reaction. This reduction follows pseudo-first order kinetics as a function of donor concentration. In the second path Mn2+ reduces P680+ in a parallel reaction that competes with the formation of the Signal IIf species. This results in a decrease in the magnitude of Signal IIf, but no change in its decay time.  相似文献   

8.
《BBA》1986,850(2):226-233
The steady-state amplitude and flash-induced kinetics of EPR signal II in two Photosystem II (PS II) reaction center protein complexes from Synechococcus were measured to probe the organization of species involved in the PS II electron-transfer chain. A PS II reaction center complex (E-1) which has 47, 40, 31, 28 and 9 kDa subunits shows both fast decaying (signal IIf) and slowly decaying (signal IIs+u) EPR components. The amplitude of signal IIf, which represents Z (the donor to P-680), is about 1 spin per 30 Chl. This corresponds to one spin per reaction center in this preparation. Signal IIs+u, the slowly decaying component of signal II, reflects D, a donor to PS II on a side chain from the path of water oxidation in higher plants and algae. Signal IIs+u is present in the E-1 preparation in a ratio of about 1 spin per 40 Chl. Flash-induced signal IIf in E-1 shows biexponential decay with half-times of 20 ms and 300 ms. In a PS II reaction center complex (CP2b) which has 47, 31, 28 and 9 kDa subunits, but no 40 kDa subunit, an appreciable amount of signal IIf is observed (about 1 per 50 Chl). Less than 1 spin per 400 Chl of signal IIs+u is visible in this sample. The kinetics of Z+ reduction (signal IIf) in CP2b is similar to that seen in E-1 preparations, indicating that CP2b contains all of the molecules necessary for primary charge separation and secondary electron donation from Z.  相似文献   

9.
The role of Cl? in the electron transfer reactions of the oxidizing side of Photosystem II (PS II) has been studied by measuring the fluorescence yield changes corresponding to the reduction of P+-680, the PS II reaction center chlorophyll, by the secondary PS II donor, Z. In Cl?-depleted chloroplasts, a rapid rise in fluorescence yield was observed following the first and second flashes, but not during the third or subsequent flashes. These results indicate that there exists an additional endogenous electron donor beyond P-680 and Z in Cl?-depleted systems. In contrast, the terminal endogenous donor on the oxidizing side of PS II in Tris-washed preparations has previously been shown to be Z, the component giving rise to EPR signals IIf and IIvf. The rate of reduction of P+-680 in the Cl?-depleted chloroplasts was as rapid as that measured in uninhibited systems, within the time resolution of our instrument. Again, this is in contrast to Tris-washed preparations in which a dramatic decrease in the rate if this reaction has been previously reported. We have also carried out a preliminary study on the rate of rereduction of Z+ in the Cl?-depleted system. Under steady-state conditions, the reduction half-time of Z+ in uninhibited systems was about 450 μs, while in the Cl?-depleted chloroplasts, the reduction of Z+ was biphasic, one phase with a half-time of about 120 ms, and a slower phase with a half-time of several seconds. The appearance of the quenching state due to P+-680 observed following the third flash on excitation of Cl?-depleted chloroplasts was delayed by two flashed when low concentrations of NH2OH (20–50 μM) were included in the medium. Hydrazine at somewhat higher concentrations showed the same effect. This is taken to indicate that the reactions leading to PS II oxidation of NH2OH or NH2NH2 are uninhibited by Cl? depletion. Addition of NH2OH at low concentrations to Tris-washed chloroplasts did not alter the pattern of the fluorescence yield, indicating that the reactions leading to the NH2OH oxidation present in Cl?-depleted systems are absent following Tris inhibition. The results are discussed in terms of an inhibition by Cl? depletion of the reactions of the oxygen-evolving complex. It is suggested that no intermediary redox couple exists between the oxygen-evolving complex and Z, and that Z+ is reduced directly by Mn of the complex. In terms of the S-state model, Cl? depletion appears to inhibit the advancement of the mechanism beyond S2, but not to inhibit the transitions from S0 to S1, or from S1 to S2.  相似文献   

10.
The light-induced oxidation of the accessory donor tyrosine-D (YD) has been studied by measurements of the EPR Signal IIslow at room temperature in the autotrophically and photoheterotrophically cultivated alga Chlamydobotrys stellata. After illumination and dark adaptation, YD Signal IIslow was observed only in autotrophic algae, i.e. under conditions of a linear photosynthetic electron transfer from water to NADP+. The addition of artificial electron acceptors phenyl-p-benzoquinone (PPQ) or dichloro-p-benzoquinone (DCQ) to the autotrophic cells caused an almost negligible increase of this signal. When photosynthetic electron flow and oxygen evolution were diminished by removal of the carbon source CO2 and addition of acetate (photoheterotrophy), a pronounced YD Signal IIslow was seen only in presence of DCQ or PPQ. Several possibilities are discussed to explain the absence of YD Signal IIslow in photoheterotrophic Chl. stellata such as the existence of a cyclic PS II electron flow very effectively reducing P680 and thereby preventing the possibility of YD oxidation. Artificial electron acceptors withdraw electrons from this cycle thus keeping the primary quinone acceptor, QA, oxidized and thereby diminishing the reduction of P680 + by cyclic PSII. This leads to the appearance of the YD Signal IIslow also in the photoheterotrophically grown algae.Abbreviations A-band- thermoluminescence band associated with S2QA - charge recombination - DCQ- 2,5-dichlorobenzoquinone - D2- structure protein of Photosystem II - EPR- electron paramagnetic resonance - OEC- oxygen evolving complex - PPQ- phenyl-p-benzoquinone - PS II- Photosystem II - P680- reaction center of Photosystem II - Q-band- thermoluminescence band associated with S2QA - charge recombination - Si- oxidation levels of the OEC - YD- tyrosine-D accessory donor to P680 - YZ- tyrosine-Z electron donor to P680 Dedicated to Prof. Dr E. Schnepf/Heidelberg.  相似文献   

11.
Rapid light-induced transients in EPR Signal IIf (F-+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q minus is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E'Os.o equals to + 480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential. A model is proposed in which Q minus, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F-+). At high potentials D is oxidized in the dark, and the (Q-+F-+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

12.
The early suggestion by Lozier and Butler (Photochem. Photobiol. 17, 133–137 (1973)) that EPR Signal II arises from radicals associated with the water-splitting process in PSII has been confirmed and extended over the intervening years. Recent work has identified the Signal II radicals, \(\begin{array}{*{20}c} {\mathop D\nolimits^{\begin{array}{*{20}c} + \\ . \\ \end{array} } } \\ \end{array}\) and \(\begin{array}{*{20}c} {\mathop Z\nolimits^{\begin{array}{*{20}c} + \\ . \\ \end{array} } } \\ \end{array}\) , with plastosemiquinone cation species. In the experiments presented here we have used ENDOR spectroscopy and D2O/H2O exchange to characterize these paramagnets in more detail. The ENDOR matrix region, which arises from protons which interact weakly with the unpaired electron spin, is well-resolved at 4 K and at least seven resonances are apparent. A number of hyperfine couplings in the 3–8 MHz range are observed and are suggested to arise from methyl or hydroxyl protons which occur as substituents on the plastosemiquinone cation ring or from amino acid protons hydrogen-bonded to the 1,4-hydroxyl groups. Orientation selection experiments are consistent with these possibilities. D2O/H2O exchange shows that the D+/Z+ site is accessible to solvent. However, the exchange occurs slowly and is not complete even after 72 hours which suggests that the free radicals are functionally isolated from solvent water.  相似文献   

13.
Alain Boussac  Anne Lise Etienne 《BBA》1984,766(3):576-581
In Tris-washed Photosystem-II particles we are able to induce an EPR signal in the dark by addition of an iridium salt (K2IrCl6). This signal is attributed to signal IIs (slow) (D+) and the redox titration gives an Em value of 760 mV for the couple D+D. On the basis of our previous studies on the equilibrium between D+Z and DZ+ (K = 104) (Boussac, A. and Etienne, A.L. (1982) Biochem. Biophys. Res. Commun. 109, 1200–1205), we therefore attribute a value of 1 V for the Em of the Z+Z couple. A second effect of K2IrCl6 is to modify the spectral characteristics of signal II. We conclude that K2IrCl6 is able to change the environment of the species from which signal IIs and signal IIf originate.  相似文献   

14.
《FEBS letters》1986,203(2):215-219
The re-reduction course of P-680+, the photooxidized PS II primary donor, was measured as a function of excitation number in Cl-depleted PS II membranes. After the 1st and 2nd excitations the signal amplitude of P-680+ is small, indicating a submicrosecond reduction of P-680+ by Z, the secondary donor of PS II. After the 3rd excitation, however, a larger P-680+ signal with a 40–50 μs half-life is observed. The slow decay of this signal is attributed to a back-reaction with a reduced acceptor in the presence of the Z+S2 state on the donor side. The state Z+S2 has a lifetime longer than 300 ms and its formation was found to depend on the presence of the abnormal S2 state created by the 1st excitation. The P-680 data and thermoluminescence measurements show that the S-state advancement beyond S2 is blocked in the absence of Cl and that the Cl-free abnormal S2 state has a lifetime about 10-times longer than the normal S2 state.  相似文献   

15.
The main cofactors that determine the photosystem II (PSII) oxygen evolution activity are borne by the D1 and D2 subunits. In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for D1. Among the 344 residues constituting D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. Here, we present the first study of PsbA2-PSII. Using EPR and UV-visible time-resolved absorption spectroscopy, we show that: (i) the time-resolved EPR spectrum of TyrZ in the (S3TyrZ)′ is slightly modified; (ii) the split EPR signal arising from TyrZ in the (S2TyrZ)′ state induced by near-infrared illumination at 4.2 K of the S3TyrZ state is significantly modified; and (iii) the slow phases of P680+⋅ reduction by TyrZ are slowed down from the hundreds of μs time range to the ms time range, whereas both the S1TyrZ → S2TyrZ and the S3TyrZ → S0TyrZ + O2 transition kinetics remained similar to those in PsbA(1/3)-PSII. These results show that the geometry of the TyrZ phenol and its environment, likely the Tyr-O···H···Nϵ-His bonding, are modified in PsbA2-PSII when compared with PsbA(1/3)-PSII. They also point to the dynamics of the proton-coupled electron transfer processes associated with the oxidation of TyrZ being affected. From sequence comparison, we propose that the C144P and P173M substitutions in PsbA2-PSII versus PsbA(1/3)-PSII, respectively located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, His-190, are responsible for these changes.  相似文献   

16.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

17.
Peroxynitrite is a strong oxidant that has been proposed to form in chloroplasts. The interaction between peroxynitrite and photosystem II (PSII) has been investigated to determine whether this oxidant could be a hazard for PSII. Peroxynitrite is shown to inhibit oxygen evolution in PSII membranes in a dose-dependent manner. Analyses by PAM fluorimetry and EPR spectroscopy have demonstrated that the inhibition target of peroxynitrite is on the PSII acceptor side. In the presence of the herbicide DCMU, the chlorophyll (Chl) a fluorescence induction curve is inhibited by peroxynitrite, but the slow phase of the Chl a fluorescence decay does not change. EPR studies demonstrate that the Signal IIslow and Signal IIfast of peroxynitrite-treated Tris-washed PSII membranes are induced at room temperature, implying that the redox active tyrosines YZ and YD of PSII are not significantly nitrated. A featureless EPR signal with a g value of approximately 2.0043 ± 0.0003 and a line width of 10 ± 1 G is induced under continuous illumination in the presence of peroxynitrite. This new EPR signal corresponds with the semireduced plastoquinone QA in the absence of magnetic interaction with the non-heme Fe2+. We conclude that peroxynitrite impairs PSII electron transport in the QAFe2+ niche.  相似文献   

18.
A class of compounds, usually referred to as ADRY reagents, destabilize intermediates in the photosynthetic water-oxidizing process. The effects of these species on the reduction kinetics of Z?, the oxidized donor to P-680, have been monitored in Tris-washed chloroplasts by following the decay of EPR Signal IIf. In the presence of ADRY reagents (e.g., sodium picrate, carbonyl cyanide m-chlorophenylhydrazone) this process follows an exponential time course, the decay half-time of which decreases as the ADRY reagent concentration increases. From this pseudo-first-order behavior, the second-order rate constants for four commonly used ADRY reagents have been extracted. The ADRY-induced acceleration in Z? reduction proceeds independently of conditions imposed on the acceptor side of Photosystem II and shows no synergism with exogenous electron donors. These observations are most easily rationalized in terms of a model which proposes direct reduction of Z? by the ADRY reagent followed by regeneration of the reduced ADRY reagent in a nonspecific reaction with membrane components such as carotenoids, chlorophyll or protein. A comparison of the second-order rate constants we obtain for ADRY reagents in their reaction with Z? in Tris-washed chloroplasts with those obtained from the literature for the ADRY- reagent induced deactivation of states S2 and S3 in oxygen-evolving chloroplasts reveals a close similarity between the two processes. From this observation, a general model for the action of ADRY reagents in destabilizing the high-potential oxidizing equivalents generated in Photosystem II is proposed.  相似文献   

19.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   

20.
The functional site of ChlZ, an auxiliary electron donor to P680+, was determined by pulsed ELDOR applied to a radical pair of YD and Chlz+ in oriented PS II membranes from spinach. The radical-radical distance was determined to be 29.5 Å and its direction was 50° from the membrane normal, indicating that a chlorophyll on the D2 protein is responsible for the EPR Chlz+ signal. Spin polarized ESEEM (Electronin Spin Echo Envelop Modulation) of a 3Chl and QA radical pair induced by a laser flash was observed in reaction center D1D2Cytb559 complex, in which QA was functionally reconstituted with DBMIB and reduced chemically. QAESEEM showed a characteristic oscillating time profile due to dipolar coupling with 3Chl. By fitting with the dipolar interaction parameters, the distance between 3Chl and QA was determined to be 25.9 Å, indicating that the accessory chlorophyll on the D1 protein is responsible for the 3Chl signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号