首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Side-chain conformational entropy in protein folding.   总被引:14,自引:11,他引:3       下载免费PDF全文
An important, but often neglected, contribution to the thermodynamics of protein folding is the loss of entropy that results from restricting the number of accessible side-chain conformers in the native structure. Conformational entropy changes can be found by comparing the number of accessible rotamers in the unfolded and folded states, or by estimating fusion entropies. Comparison of several sets of results using different techniques shows that the mean conformational free energy change (T delta S) is 1 kcal.mol-1 per side chain or 0.5 kcal.mol-1 per bond. Changes in vibrational entropy appear to be negligible compared to the entropy change resulting from the loss of accessible rotamers. Side-chain entropies can help rationalize alpha-helix propensities, predict protein/inhibitor complex structures, and account for the distribution of side chains on the protein surface or interior.  相似文献   

2.
Chellgren BW  Creamer TP 《Proteins》2006,62(2):411-420
Loss of conformational entropy is one of the primary factors opposing protein folding. Both the backbone and side-chain of each residue in a protein will have their freedom of motion restricted in the final folded structure. The type of secondary structure of which a residue is part will have a significant impact on how much side-chain entropy is lost. Side-chain conformational entropies have previously been determined for folded proteins, simple models of unfolded proteins, alpha-helices, and a dipeptide model for beta-strands, but not for polyproline II (PII) helices. In this work, we present side-chain conformational estimates for the three regular secondary structure types: alpha-helices, beta-strands, and PII helices. Entropies are estimated from Monte Carlo computer simulations. Beta-strands are modeled as two structures, parallel and antiparallel beta-strands. Our data indicate that restraining a residue to the PII helix or antiparallel beta-strand conformations results in side-chain entropies equal to or higher than those obtained by restraining residues to the parallel beta-strand conformation. Side-chains in the alpha-helix conformation have the lowest side-chain entropies. The observation that extended structures retain the most side-chain entropy suggests that such structures would be entropically favored in unfolded proteins under folding conditions. Our data indicate that the PII helix conformation would be somewhat favored over beta-strand conformations, with antiparallel beta-strand favored over parallel. Notably, our data imply that, under some circumstances, residues may gain side-chain entropy upon folding. Implications of our findings for protein folding and unfolded states are discussed.  相似文献   

3.
We introduce a new algorithm, IRECS (Iterative REduction of Conformational Space), for identifying ensembles of most probable side-chain conformations for homology modeling. On the basis of a given rotamer library, IRECS ranks all side-chain rotamers of a protein according to the probability with which each side chain adopts the respective rotamer conformation. This ranking enables the user to select small rotamer sets that are most likely to contain a near-native rotamer for each side chain. IRECS can therefore act as a fast heuristic alternative to the Dead-End-Elimination algorithm (DEE). In contrast to DEE, IRECS allows for the selection of rotamer subsets of arbitrary size, thus being able to define structure ensembles for a protein. We show that the selection of more than one rotamer per side chain is generally meaningful, since the selected rotamers represent the conformational space of flexible side chains. A knowledge-based statistical potential ROTA was constructed for the IRECS algorithm. The potential was optimized to discriminate between side-chain conformations of native and rotameric decoys of protein structures. By restricting the number of rotamers per side chain to one, IRECS can optimize side chains for a single conformation model. The average accuracy of IRECS for the chi1 and chi1+2 dihedral angles amounts to 84.7% and 71.6%, respectively, using a 40 degrees cutoff. When we compared IRECS with SCWRL and SCAP, the performance of IRECS was comparable to that of both methods. IRECS and the ROTA potential are available for download from the URL http://irecs.bioinf.mpi-inf.mpg.de.  相似文献   

4.
Protein side chains make most of the specific contacts between proteins and other molecules, and their conformational properties have been studied for many years. These properties have been analyzed primarily in the form of rotamer libraries, which cluster the observed conformations into groups and provide frequencies and average dihedral angles for these groups. In recent years, these libraries have improved with higher resolution structures and using various criteria such as high thermal factors to eliminate side chains that may be misplaced within the crystallographic model coordinates. Many of these side chains have highly non-rotameric dihedral angles. The origin of side chains with high B-factors and/or with non-rotameric dihedral angles is of interest in the determination of protein structures and in assessing the prediction of side chain conformations. In this paper, using a statistical analysis of the electron density of a large set of proteins, it is shown that: (1) most non-rotameric side chains have low electron density compared to rotameric side chains; (2) up to 15% of chi1 non-rotameric side chains in PDB models can clearly be fit to density at a single rotameric conformation and in some cases multiple rotameric conformations; (3) a further 47% of non-rotameric side chains have highly dispersed electron density, indicating potentially interconverting rotameric conformations; (4) the entropy of these side chains is close to that of side chains annotated as having more than one chi(1) rotamer in the crystallographic model; (5) many rotameric side chains with high entropy clearly show multiple conformations that are not annotated in the crystallographic model. These results indicate that modeling of side chains alternating between rotamers in the electron density is important and needs further improvement, both in structure determination and in structure prediction.  相似文献   

5.
Hu X  Kuhlman B 《Proteins》2006,62(3):739-748
Loss of side-chain conformational entropy is an important force opposing protein folding and the relative preferences of the amino acids for being buried or solvent exposed may be partially determined by which amino acids lose more side-chain entropy when placed in the core of a protein. To investigate these preferences, we have incorporated explicit modeling of side-chain entropy into the protein design algorithm, RosettaDesign. In the standard version of the program, the energy of a particular sequence for a fixed backbone depends only on the lowest energy side-chain conformations that can be identified for that sequence. In the new model, the free energy of a single amino acid sequence is calculated by evaluating the average energy and entropy of an ensemble of structures generated by Monte Carlo sampling of amino acid side-chain conformations. To evaluate the impact of including explicit side-chain entropy, sequences were designed for 110 native protein backbones with and without the entropy model. In general, the differences between the two sets of sequences are modest, with the largest changes being observed for the longer amino acids: methionine and arginine. Overall, the identity between the designed sequences and the native sequences does not increase with the addition of entropy, unlike what is observed when other key terms are added to the model (hydrogen bonding, Lennard-Jones energies, and solvation energies). These results suggest that side-chain conformational entropy has a relatively small role in determining the preferred amino acid at each residue position in a protein.  相似文献   

6.
J Heringa  P Argos 《Proteins》1999,37(1):30-43
We studied the relative spatial positioning of nonrotameric side chains with atypical and strained dihedral angles in well-refined protein tertiary structures. The analysis was confined to buried protein cores, which are less error prone to side-chain positioning. More than half of the proteins with two or more nonrotameric residues displayed clusters of two or more (and up to five) nonrotameric residues. The clusters exhibited lower average crystallographic temperature factors compared with isolated nonrotameric residues. Nonrotameric clusters showed significantly tighter packing than corresponding rotameric clusters and had distinct residue compositions that did not correlate with amino acid characteristics such as size, hydrophobicity, turn preference, and the like. Such nonrotameric residue biases would suggest that spatially concentrated strain in protein folds would be minimized by lowered vibrational energy. Furthermore, nonrotameric residues avoided helices and strands and mostly preferred coil regions. If they were in the helical conformation, then they preferred to be within N-terminal segments. Proteins 1999;37:30-43.  相似文献   

7.
Search and study of the general principles that govern kinetics and thermodynamics of protein folding generate a new insight into the factors controlling this process. Here, based on the known experimental data and using theoretical modeling of protein folding, we demonstrate that there exists an optimal relationship between the average conformational entropy and the average energy of contacts per residue-that is, an entropy capacity-for fast protein folding. Statistical analysis of conformational entropy and number of contacts per residue for 5829 protein structures from four general structural classes (all-alpha, all-beta, alpha/beta, alpha+beta) demonstrates that each class of proteins has its own class-specific average number of contacts (class alpha/beta has the largest number of contacts) and average conformational entropy per residue (class all-alpha has the largest number of rotatable angles phi, psi, and chi per residue). These class-specific features determine the folding rates: alpha proteins are the fastest folding proteins, then follow beta and alpha+beta proteins, and finally alpha/beta proteins are the slowest ones. Our result is in agreement with the experimental folding rates for 60 proteins. This suggests that structural and sequence properties are important determinants of protein folding rates.  相似文献   

8.
Creamer TP 《Proteins》2000,40(3):443-450
The largest force disfavoring the folding of a protein is the loss of conformational entropy. A large contribution to this entropy loss is due to the side-chains, which are restricted, although not immobilized, in the folded protein. In order to accurately estimate the loss of side-chain conformational entropy that occurs upon folding it is necessary to have accurate estimates of the amount of entropy possessed by side-chains in the ensemble of unfolded states. A new scale of side-chain conformational entropies is presented here. This scale was derived from Monte Carlo computer simulations of small peptide models. It is demonstrated that the entropies are independent of host peptide length. This new scale has the advantage over previous scales of being more precise with low standard errors. Better estimates are obtained for long (e.g., Arg and Lys) and rare (e.g., Trp and Met) side-chains. Excellent agreement with previous side-chain entropy scales is achieved, indicating that further advancements in accuracy are likely to be small at best. Strikingly, longer side-chains are found to possess a smaller fraction of the theoretical maximum entropy available than short side-chains. This indicates that rotations about torsions after chi(2) are significantly affected by side-chain interactions with the polypeptide backbone. This finding invalidates previous assumptions about side-chain-backbone interactions. Proteins 2000;40:443-450.  相似文献   

9.
Conformational equilibria of valine studied by dynamics simulation.   总被引:5,自引:0,他引:5  
The conformational probability distribution of a valine residue in the valine dipeptide and of the valine side chain in an alpha-helix, as well as the change in helix stability for replacing alanine with valine, has been calculated by molecular dynamics simulations of explicitly hydrated systems: dipeptide, tetrapeptide and 10-, 14- and 18-residue oligoalanine helices. All computed free-energy differences are means from at least eight separate slow-growth simulations, four in each direction and are reported with their root-mean-square deviations. Different values for the change in free energy of folding (delta delta G degrees) have been calculated with the use of forcefields having an all-atom and a central-atom representation of methyl groups, etc. The value obtained with the all-atom forcefield agrees well with new experimental values (3 kJ/mol = 0.7 kcal/mol). Furthermore, the most stable valine side-chain rotamer in the helix is different for these two representations. The most stable rotamer for the all atom conformation is the same one that predominates for valines in alpha-helices in proteins of known conformation. The lower conformational freedom of the valine side chain in the helix contributes 1 kJ/mol to the difference in stability computed with the all-atom potential; unfavorable interactions of the side chain with helix, even in the most stable conformation, further increase delta delta G degrees.  相似文献   

10.
D Pal  P Chakrabarti 《Proteins》1999,36(3):332-339
The average contribution of conformational entropy for individual amino acid residues towards the free energy of protein folding is not well understood. We have developed empirical scales for the loss of the main-chain (torsion angles, phi and psi) conformational entropy by taking its side-chain into account. The analysis shows that the main-chain component of the total conformational entropy loss for a residue is significant and reflects intrinsic characteristics associated with individual residues. The values have direct correlation with the hydrophobicity values and this has important bearing on the folding process. Proteins 1999;36:332-339.  相似文献   

11.
The excluded volume occupied by protein side-chains and the requirement of high packing density in the protein interior should severely limit the number of side-chain conformations compatible with a given native backbone. To examine the relationship between side-chain geometry and side-chain packing, we use an all-atom Monte Carlo simulation to sample the large space of side-chain conformations. We study three models of excluded volume and use umbrella sampling to effectively explore the entire space. We find that while excluded volume constraints reduce the size of conformational space by many orders of magnitude, the number of allowed conformations is still large. An average repacked conformation has 20 % of its chi angles in a non-native state, a marked reduction from the expected 67 % in the absence of excluded volume. Interestingly, well-packed conformations with up to 50 % non-native chi angles exist. The repacked conformations have native packing density as measured by a standard Voronoi procedure. Entropy is distributed non-uniformly over positions, and we partially explain the observed distribution using rotamer probabilities derived from the Protein Data Bank database. In several cases, native rotamers that occur infrequently in the database are seen with high probability in our simulation, indicating that sequence-specific excluded volume interactions can stabilize rotamers that are rare for a given backbone. In spite of our finding that 65 % of the native rotamers and 85 % of chi(1) angles can be predicted correctly on the basis of excluded volume only, 95 % of positions can accommodate more than one rotamer in simulation. We estimate that, in order to quench the side-chain entropy observed in the presence of excluded volume interactions, other interactions (hydrophobic, polar, electrostatic) must provide an additional stabilization of at least 0.6 kT per residue in order to single out the native state.  相似文献   

12.
13.
Side-chain modeling with an optimized scoring function   总被引:1,自引:0,他引:1       下载免费PDF全文
Modeling side-chain conformations on a fixed protein backbone has a wide application in structure prediction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring function, and search strategy. We have developed a new and simple scoring function, which operates on side-chain rotamers and consists of the following energy terms: contact surface, volume overlap, backbone dependency, electrostatic interactions, and desolvation energy. The weights of these energy terms were optimized to achieve the minimal average root mean square (rms) deviation between the lowest energy rotamer and real side-chain conformation on a training set of high-resolution protein structures. In the course of optimization, for every residue, its side chain was replaced by varying rotamers, whereas conformations for all other residues were kept as they appeared in the crystal structure. We obtained prediction accuracy of 90.4% for chi(1), 78.3% for chi(1 + 2), and 1.18 A overall rms deviation. Furthermore, the derived scoring function combined with a Monte Carlo search algorithm was used to place all side chains onto a protein backbone simultaneously. The average prediction accuracy was 87.9% for chi(1), 73.2% for chi(1 + 2), and 1.34 A rms deviation for 30 protein structures. Our approach was compared with available side-chain construction methods and showed improvement over the best among them: 4.4% for chi(1), 4.7% for chi(1 + 2), and 0.21 A for rms deviation. We hypothesize that the scoring function instead of the search strategy is the main obstacle in side-chain modeling. Additionally, we show that a more detailed rotamer library is expected to increase chi(1 + 2) prediction accuracy but may have little effect on chi(1) prediction accuracy.  相似文献   

14.
Doig AJ 《Biophysical chemistry》1996,61(2-3):131-141
The absolute Gibbs energy, enthalpy and entropy of each of the internal rotations found in protein side chains has been calculated. The calculation requires the moments of inertia of the side chains about each bond, the potential energy barrier and the symmetry number and gives the maximum possible thermodynamic consequences of restricting side chain motion when a protein folds. Hindering side chain internal rotations is unfavourable in terms of Gibbs energy and entropy; it is enthalpically favourable at 0 K. At room temperature, it is estimated that the adverse entropy of hindering buried side chain internal rotation is only 25% of the absolute entropy. The difference between absolute entropies in the folded and unfolded states gives the entropy change for folding. The estimated Gibbs energy change for restricting each residue correlates moderately well with the probability of that residue being found on the folded protein surface, rather than in the protein interior (where motion is restricted).  相似文献   

15.
16.
A graph-theory algorithm for rapid protein side-chain prediction   总被引:19,自引:0,他引:19       下载免费PDF全文
Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.  相似文献   

17.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Based on the known experimental data and using the theoretical modeling of protein folding, we demonstrate that there exists an optimal relationship between the average conformational entropy and the average energy of contacts per residue, that is an entropy capacity, for fast protein folding. Statistical analysis of conformational entropy and the number of contacts per residue for 5829 protein structures from four general structural classes (all-alpha, all-beta, +/-/beta, alpha+beta) demonstrates that each class of proteins has its own class-specific average number of contacts and average conformational entropy per residue. These class-specific features determine the folding rates: a proteins are the fastest folding proteins, then follow beta and alpha+beta proteins, and finally alpha/beta proteins are the slowest ones.  相似文献   

19.
Search and study the general principles that govern kinetics and thermodynamics of protein folding generates new insight into the factors that control this process. Here, we demonstrate based on the known experimental data and using theoretical modeling of protein folding that side-chain entropy is one of the general determinants of protein folding. We show for proteins belonging to the same structural family that there exists an optimal relationship between the average side-chain entropy and the average number of contacts per residue for fast folding kinetics. Analysis of side-chain entropy for proteins that fold without additional agents demonstrates that there exists an optimal region of average side-chain entropy for fast folding. Deviation of the average side-chain entropy from the optimal region results in an anomalous protein folding process (prions, alpha-lytic protease, subtilisin, some DNA-binding proteins). Proteins with high or low side-chain entropy would have extended unfolded regions and would require some additional agents for complete folding. Such proteins are common in nature, and their structure properties have biological importance.  相似文献   

20.
Protein-protein interactions are the key to many biological processes. How proteins selectively and correctly associate with their required protein partner(s) is still unclear. Previous studies of this "protein-docking problem" have found that shape complementarity is a major determinant of interaction, but the detailed balance of energy contributions to association remains unclear. This study estimates side-chain conformational entropy (per unit solvent accessible area) for various protein surface regions, using a self-consistent mean field calculation of rotamer probabilities. Interfacial surface regions were less flexible than the rest of the protein surface for calculations with monomers extracted from homodimer datasets in 21 of 25 cases, and in 8 of 9 for the large protomer from heterodimer datasets. In surface patch analysis, based on side-chain conformational entropy, 68% of true interfaces were ranked top for the homodimer set and 66% for the large protomer/heterodimer set. The results indicate that addition of a side-chain entropic term could significantly improve empirical calculations of protein-protein association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号