首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a clonal strain of rat pituitary tumour cells (GH4C1 cells), thyroliberin stimulated prolactin secretion and synthesis: effects that could be demonstrated after 5 min and 4–5 h of treatment, respectively. Within 0.5–5 min after addition of thyroliberin, maximal increases (2–4 hold) in cellular cyclic GMP concentrations were observed, and this rise preceded or occurred simultaneously with that of cyclic AMP. After 60 min of treatment the concentrations of the cyclic nucleotides had returned to control values. Half maximal and maximal stimulation of cyclic GMP elevations were obtained with approx. 2·109 and approx. 27·10?9 thyroliberin, respectively. Aminophylline increased both cyclic GMP and cyclic AMP, and potentiated the stimulatory effects of thyroliberin on both cyclic nucleotides. The dibutyryl derivative of cyclic GMP (10?4–10?6 M) stimulated prolactin synthesis, but not hormone release. Prostaglandin E2 (3·10?7 M) stimulated cellular cyclic AMP concentrations, but did not affect cyclic GMP levels. We conclude that thyroliberin in the GH4C1 ccell strain stimulates cyclic GMP formation, in addition to elevate cyclic AMP concentrations. The stimulatory effect on cyclic GMP is probably not secondary to the rise in cyclic AMP concentration, since prostaglandin E2 elevates only cyclic GMP is involved in the action of thyroliberin on prolactin, the present results suggest a role on hormone synthesis.  相似文献   

2.
Rat pancreas pieces spontaneously released PGE2 (2.3 ng/100 mg × 45 min) and PGF (7.6 ng/100 mg × 45 min). This release corresponds probably to a neo-synthesis since it was abolished by indomethacin. Carbamylcholine (≥ 10 μM), caerulein (≥ 10 nM) and secretin (≥ 10 nM) stimulated the release of PGE2 and PGF : the concentrations of stimulators required to increase PGs release were thus much higher than those which trigger enzyme secretion. Atropine specifically inhibited the cholinergic stimulation, whereas indomethacin blocked the stimulatory effects of all secretagogues. Stimulation of PGE2 and PGF release was reduced in a Ca++-free medium, abolished by EGTA and mimicked by the ionophore A23187, underscoring the crucial role of Ca++ in the regulation of PGs synthesis by the pancreas. Neither PGE2 nor PGF stimulated enzyme secretion in this system and indomethacin did not inhibit the secretory effect of carbamylcholine. Increased synthesis of prostaglandins in response to pancreatic secretagogues does not appear to be involved in the process of enzyme secretion.  相似文献   

3.
There is increasing experimental evidence of the nongenomic action of thyroid hormones mediated by receptors located in the plasma membrane or inside cells. The aim of this work was to characterize the reverse T3 (rT3) action on calcium uptake and its involvement in immature rat Sertoli cell secretion. The results presented herein show that very low concentrations of rT3 are able to increase calcium uptake after 1 min of exposure. The implication of T-type voltage-dependent calcium channels and chloride channels in the effect of rT3 was evidenced using flunarizine and 9-anthracene, respectively. Also, the rT3-induced calcium uptake was blocked in the presence of the RGD peptide (an inhibitor of integrin-ligand interactions). Therefore, our findings suggest that calcium uptake stimulated by rT3 may be mediated by integrin αvβ3. In addition, it was demonstrated that calcium uptake stimulated by rT3 is PKC and ERK-dependent. Furthermore, the outcomes indicate that rT3 also stimulates cellular secretion since the cells manifested a loss of fluorescence after 4 min incubation, indicating an exocytic quinacrine release that seems to be mediated by the integrin receptor. These findings indicate that rT3 modulates the calcium entry and cellular secretion, which might play a role in the regulation of a plethora of intracellular processes involved in male reproductive physiology.  相似文献   

4.
Several IL 3-dependent murine bone marrow-derived cell lines can be stimulated to grow with antigen-antibody (Ag.Ab) complexes. The Ag.Ab complexes induced lymphokine gene expression and the synthesis of IL 2, GM-CSF, IL 3, and BSF-1 (IL 4). The lymphokines produced by these IL 3-dependent cells appeared to stimulate their own growth, as both IL 3 and BSF-1 (IL 4) stimulated the growth of IL 3-dependent cells. Ag.Ab complexes also stimulate the growth of primary cultures of bone marrow cells that have been previously activated with IL 3. Normal bone marrow, IL 2-, and GM-CSF-dependent bone marrow cell lines could bind Ag.Ab complexes, but binding did not result in the induction of lymphokine synthesis or cell growth. Hyperimmune serum from mice also stimulated lymphokine synthesis and cell growth in IL 3-dependent cells, and the stimulatory activity was removed by treatment with Staphylococcus aureus protein A, suggesting the presence of Ag.Ab complexes.  相似文献   

5.
The synthesis and the metabolism of inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4) are the responsibility of a single multifunctional kinase/phosphotransferase, ITPK1. This enzyme dynamically couples the cellular levels of Ins(3,4,5,6)P4 to the receptor-dependent hydrolysis of inositol lipids by phospholipase C. This is a biologically significant event because Ins(3,4,5,6)P4 regulates the conductance of a specialized class of chloride ion channels, which regulate many cellular functions including epithelial salt and fluid secretion, synaptic efficacy, bone remodelling, tumor cell migration, insulin release from pancreatic β-cells, and inflammatory responses. This review assesses the current state of our knowledge of this versatile and ubiquitous signalling cascade.  相似文献   

6.
Retinol-binding protein (RBP), the plasma transport protein for vitamin A, is synthesized and secreted by the liver. In vitamin A deficiency, RBP secretion is blocked, leading to low serum and high liver levels of RBP. Administration of retinol to the intact rat stimulates a rapid secretion of RBP from liver into serum. We explored the use of a liver cell culture system to study the regulation of the synthesis and secretion of RBP. We found two lines of differentiated rat hepatoma cells, MH1C1 and H4 II EC3 (H4), that synthesized RBP during culture in vitro. The net synthesis of RBP was a function of the number of cells per dish and the duration of incubation. Both cell lines synthesized RBP when incubated in Neuman and Tytell's Serumless Medium (NTS medium), while the MH1C1 cells also synthesized RBP in Ham's F-12 medium with added serum. A relatively large proportion (14–56%) of the RBP was retained within the cells when they were incubated in the vitamin A-free NTS medium alone. Addition of serum to NTS medium stimulated the release of RBP from the cells into the medium and also increased the net synthesis of RBP. These effects were not due to the increased adhesion of the cells to the petri dish. Addition of retinol (at levels of 0.35 or 3.5 nmole/ml) to the NTS medium resulted in the stimulation of RBP secretion from the cells into the medium and an increase in the net synthesis of RBP. By contrast, retinol had no effect on either the net synthesis or the cell-to-medium distribution of rat serum albumin. The data from these cell lines in culture suggest that retinol has a specific regulatory effect on RBP metabolism. These cells thus resemble the normal rat liver cell in vivo in regard to the known regulation of RBP metabolism.  相似文献   

7.
Summary The BeWo trophoblastic cell line was employed to assess the requirement for microtubules and cellular energy in human chorionic gonadotropin (hCG) secretion. In contrast to the general inhibitory effect of colchicine and vincristine on hormone secretion in systems involving exocytosis, wide concentration ranges of these antimicrotubule agents caused enhancement of hCG secretion. Similarly, cytochalasin B, an agent that interferes with microfilament function, doubled both basal hCG secretion, and secretion of hCG stimulated by 1mm dibutyryl cyclic AMP plus 1mm theophylline (dbT). Inhibitors of cellular energy production (2,4-dinitrophenol, malonate, azide) decreased both secreted and cellular levels of hormone. High concentrations of K+ gave no enhancement of basal or dbT-stimulated hCG secretion, nor any reduction of cellular hCG levels. These findings contrasted with observations of others in secretory systems involving exocytosis, in which high K+ potentiated basal or stimulated hormone release and depleted cellular stores of hormone. It was concluded that the process of hCG secretion in the malignant trophoblast is fundamentally different from the mechanism of protein hormone secretion in other tissues. This investigation was supported by Grant No. CA 23357 awarded by the National Cancer Institute, DHEW.  相似文献   

8.
The studies reported here confirm the previously observed potent stimulus to growth hormone (GH) secretion by prostaglandin E1 (PGE1). Proportional increments in GH secretion were observed following in vitro addition of PGE1 over a concentration range of 10?7 to 10?5 M. Growth hormone secretion could not be further stimulated by higher concentrations of prostaglandin. Prostaglandin E1 also increased cyclic AMP concentration in the pituitary explants in a proportional fashion, which correlated closely with its potency as a growth hormone secretogogue. In order to define more precisely the mechanism by which prostaglandin acts, the effects of prostaglandin antagonist, 7-oxa-13-prostynoic acid, on GH secretion and cyclic AMP accumulation were investigated. Addition of the antagonist alone had no consistent effects on GH secretion or cyclic AMP levels in the pituitary. However, the antagonist significantly reduced the stimulation of hormone release and cyclic AMP accumulation found following addition of PGE1. Increasing the concentration of antagonist further diminished prostaglandin stimulated hormone release and nucleotide accumulation. The antagonist failed to block the stimulatory effects of theophylline and dibutyryl cyclic AMP on GH release, indicating that the inhibition observed occurred prior to intracellular accumulation of the cyclic nucleotide. These results are consistent with the hypothesis that a prostaglandin receptor on the pituitary somatotrope is linked to the adenyl cyclase-cyclic AMP system.  相似文献   

9.
Summary We measured the short-circuit current (I sc) across canine tracheal epithelium and the intracellular cAMP levels of the surface epithelial cells in the same tissues to assess the role of cAMP as a mediator of electrogenic Cl secretion. Secretogogues fall into three classes: (i) epinephrine, prostaglandin (PG) E1, and theophylline increase bothI sc and cellular cAMP levels; (ii) PGF2 and calcium ionophore A23187, increaseI sc without affecting cell cAMP levels at the doses employed; and (iii) acetylcholine, histamine, and phenylephrine do not alter eitherI sc or cAMP levels.These findings indicate that: (i) increases in cAMP or Ca activity stimulate electrogenic Cl secretion by the columnar cells of the surface epithelium; (ii) cAMP mediates the effects of PGE1 and -adrenergic agonists; (iii) a strict correlation between cAMP levels and Cl secretion rate is not apparent from spontaneous variations in these parameters or from dose-response relations ofI sc and cAMP to epinephrine concentration; and (iv) acetylcholine, histamine, and phenylephrine, agents that stimulate electrically-neutral NaCl secretion by submucosal glands, do not evoke cAMP-mediated, responses by the surface epithelium.Addition of 10–6 m indomethacin (or other prostaglandin synthesis inhibitors) to the mucosal solution decreasesI sc and cellular cAMP levels and reduces the release of PGE2 into the bathing media by 80%. Indomethacin does not interfere with the subsequent secretory response to PGE1. This suggests that endogenous prostaglandin production underlies the spontaneous secretion of Cl across canine tracheal epithelium under basal conditions.  相似文献   

10.
《Cellular signalling》2014,26(5):1105-1117
Mast cells play important roles via FcεRI-mediated activation in allergic asthma. A nonpolymorphic MHC I-like molecule CD1d, which is mainly expressed in APCs, presents glycolipid Ag to iTCR on iNKT cells and modulates allergic responses. This study aimed to investigate the role of CD1d on IgE production and mast cell activation related to allergic asthma. Bone marrow-derived mast cells (BMMCs) from C57BL/6 Wild type (WT) or KO (CD1d−/−) mice were activated with Ag/Ab (refer to WT-act-BMMCs and KO-act-BMMCs, respectively) or α-Galactosylceramide (WT-αGal-BMMCs, KO-αGal-BMMCs) in the presence of iNKT cells. WT, KO or BMMC-transferred KO mice were sensitized and/or challenged by OVA or α-Gal to induce asthma. KO-act-BMMCs reduced intracellular Ca2 + levels, expression of signaling molecules (Ras, Rac1/2, PLA2, COX-2, NF-κB/AP-1), mediator release (histamines, leukotrienes and cytokines/chemokines), and total IgE levels versus the corresponding WT-BMMCs. KO mice reduced total and OVA-specific serum IgE levels, number of mast cells, recruiting molecules (CCR2/CCL2, VCAM-1, PECAM-1), expression of tryptase, c-kit, CD40L and cytokine mRNA, co-localization of c-kit and CD1d or iNKT cells in BAL cells or lung tissues, and PCA responses, compared with the corresponding WT mice. BMMC-transferred KO-both mice showed the restoration of all allergic responses versus KO-both mice (Ag/Ab reaction plus α-Gal). KO-αGal-BMMCs or KO-αGal mice did not show any responses. Our data suggest that CD1d-expressed mast cells may function as APC cells for iNKT cells and exacerbate airway inflammation and remodeling through up-regulating IgE production via B cell Ig class switching and mediator release in mast cells of OVA-challenged mice.  相似文献   

11.
Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, KATP channel activity and expression were reduced. Of two KATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses KATP channel and by so doing regulates glucose-dependent insulin secretion.  相似文献   

12.
Ethanolamine plasmalogens (1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamines) of many tissues contain high levels of arachidonate at their 2-position, and in certain tissues have been implicated as possible donors of arachidonate required in the synthesis of prostaglandins and thromboxanes. In the present study, [3H]arachidonate-labeled phospholipids of HSDM1C1 cells, a cell line derived from a mouse fibrosarcoma, were examined to determine the donor of the arachidonic acid released upon bradykinin stimulation of the synthesis of PGE2. HSDM1C1 cells labeled with [3H]arachidonic acid for 24 hr in serum-free medium were used in most of the experiments and had the following distribution of label among the cellular lipids; phosphatidylcholine (33%), phosphatidylinositol (20%), diacyl-sn-glycero-3-phosphoethanolamine (15%), ethanolamine plasmalogen (15%), and less polar lipids (16%). Bradykinin treatment stimulated a rapid hydrolysis of [3H]arachidonate from the cellular lipids and conversion of the released acid to PGE2, which was secreted into the medium. The label was released predominantly from phosphatidylinositol and possibly from phosphatidylcholine with no detectable change in the labeling of diacyl- or 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. The ethanolamine plasmalogens, therefore, do not appear to be involved in the stimulated release of arachidonate in the HSDM1C1 cells. Indomethacin blocked the bradykinin-stimulated synthesis of PGE2 and to a lesser degree inhibited the release of [3H]-arachidonate from the cellular lipids into the medium.  相似文献   

13.
Objective: To test the hypothesis that incorporation of medium‐chain fatty acids (FAs) into adipocyte triglycerides alters intracellular lipolysis. Research Methods and Procedures: 3T3‐L1 adipocytes were pretreated with octanoate for various incubation periods. After the removal of exogenous FAs, cells were incubated with different lipolytic agonists. To determine the effects on lipolysis, we measured the following: the release of glycerol and FAs, lipase activity, protein levels of hormone‐sensitive lipase (HSL), and perilipin A; translocation of HSL; phosphorylation of perilipin A; and levels of cellular adenosine triphosphate, cyclic adenosine monophosphate, and H2O2. To compare the effects of starvation with those caused by octanoate pretreatment, we measured glycerol release and H2O2 generation in rat adipocytes of starved donors. Results: Pretreatment of adipocytes with octanoate in vitro increased basal lipolysis but decreased the cellular response for agonists. The same effects were seen in starvation in vivo. Preincubation with octanoate for 48 hours did not affect basal lipase activity, HSL, and perilipin protein levels, but it reduced agonist‐stimulated perilipin phosphorylation and HSL translocation toward fat droplets. This was associated with a reduction in basal cellular adenosine triphosphate levels and agonist‐stimulated cyclic adenosine monophosphate generation. Starvation and octanoate pretreatment both increased intracellular H2O2 concentrations, which might also contribute to the inhibition on agonist‐stimulated lipolysis. Discussion: Pretreatment with octanoate seems to induce changes in adipocyte lipolysis in a pattern mimicking the effects of starvation. Such changes could contribute, in part, to weight loss in animals and humans associated with dietary medium‐chain FAs.  相似文献   

14.
The role of prostaglandins in exocrine pancreatic enzyme secretion was studied. The effects of three inhibitors of prostaglandin and thromboxane syntheses, were evaluated on release of amylase from dispersed rat pancreatic acinar cells. Mepacrine inhibited, while indomethacin and imidazole had no effect on basal or carbachol or cholecystokinin stimulated enzyme release. Exogenous arachidonic acid or various prostaglandins (E1, E2, F, I2), also did not affect the secretory process. Acinar cells actively incorporated radioactive arachidonic acid, principally into phospholipids (especially phosphatidylcholine), however release of the free fatty acid and subsequent synthesis of radioactive endogenous prostaglandins was not stimulated by the presence of different pancreatic stimulants. Pancreatic microsomes were found to be lacking in cyclo-oxygenase, an enzyme involved in endegenous synthesis of prostaglandins. The data suggest that prostaglandins are not involved directly in excitation-secretion coupling in the exocrine pancreas.  相似文献   

15.
Endothelial cell injury is often associated with increased synthesis of prostaglandin (PG)I2. We observed, however, that endothelial cells treated with metabolic inhibitors which reduce cellular ATP content develop an injury pattern characterized by reduced PGI2 synthesis. This study examined the relationship between cell injury, arachidonic acid metabolism and ATP content in human umbilical vein endothelial cells treated with 2-deoxyglucose (2DG), a glycolytic inhibitor, and oligomycin (OG), a respiratory chain inhibitor. Either inhibitor alone significantly reduced cellular ATP concentrations, but only OG reduced basal PG synthesis. The combination of 2DG and OG, however, was more effective than either agent alone in reducing cellular ATP content (≥ 50% of control) and inhibiting basal and agonist-stimulated PGI2 synthesis. This reduced PGI2 synthesis preceded 51 chromium release, lactic dehydrogenase release and was not associated with a net release of arachidonic acid from cell membranes. Histamine, A23187 and bradykinin stimulated PGI2 synthesis in untreated but not in 2DG and OG treated cells. Exogenous arachidonic acid increased PGI2 synthesis to a similar extent in both 2DG and OG treated and untreated cells. Therefore, reduced PG synthesis in 2DG and OG treated endothelial cells is not due to inhibition of cyclooxygenase. Furthermore, reduced PG synthesis in these cells occurs prior to cell injury and is not strictly associated with cellular ATP depletion.  相似文献   

16.
Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall.  相似文献   

17.
Ethanolamine plasmalogens (1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamines) of many tissues contain high levels of arachidonate at their 2-position, and in certain tissues have been implicated as possible donors of arachidonate required in the synthesis of prostaglandins and thromboxanes. In the present study, [3H]arachidonate-labeled phospholipids of HSDM1C1 cells, a cell line derived from a mouse fibrosarcoma, were examined to determine the donor of the arachidonic acid released upon bradykinin stimulation of the synthesis of PGE2. HSDM1C1 cells labeled with [3H]arachidonic acid for 24 hr in serum-free medium were used in most of the experiments and had the following distribution of label among the cellular lipids; phosphatidylcholine (33%), phosphatidylinositol (20%), diacyl-sn-glycero-3-phosphoethanolamine (15%), ethanolamine plasmalogen (15%), and less polar lipids (16%). Bradykinin treatment stimulated a rapid hydrolysis of [3H]arachidonate from the cellular lipids and conversion of the released acid to PGE2, which was secreted into the medium. The label was released predominantly from phosphatidylinositol and possibly from phosphatidylcholine with no detectable change in the labeling of diacyl- or 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. The ethanolamine plasmalogens, therefore, do not appear to be involved in the stimulated release of arachidonate in the HSDM1C1 cells. Indomethacin blocked the bradykinin-stimulated synthesis of PGE2 and to a lesser degree inhibited the release of [3H]-arachidonate from the cellular lipids into the medium.  相似文献   

18.
The modulation of insulin-like growth factor-binding protein (IGFBP) secretion is an important variable affecting muscle cell metabolism, proliferation, and differentiation. We have previously shown that secretion of IGFBP-4 and IGFBP-5 by L6 and BC3H-1 muscle cells was stimulated by treatment with either insulin, IGF-I, or IGF-II. Herein, these cells were used to further identify mechanisms involved in controlling IGFBP secretion. Agents that elevate intracellular cAMP concentrations (dcAMP, forskolin, isoproterenol, and prostaglandin [PGE1]) increase secretion of IGFBP-4 and IGFBP-5 from L6 cells. Similar increases in IGFBP secretion were found by treatment with either insulin, IGF-I, or dcAMP. The effects of dcAMP and either insulin or IGF-I were additive, but the effects of insulin and IGF-I were not additive. These results suggest that insulin/IGF-I and dcAMP are acting via distinct mechanisms to stimulate IGFBP secretion. Indomethacin, which blocks endogenous prostaglandin synthesis, and progesterone, which decreases intracellular cAMP levels, decreased IGFBP-4 and IGFBP-5 secretion. IGFBP-5 secretion by BC3H-1 cells was increased by either insulin or IGF-I. Agents which elevate intracellular cAMP concentrations did not increase IGFBP-5 secretion. Additionally, these agents were not synergistic with either insulin or IGF-I. However, indomethacin and progesterone depressed IGFBP-5 secretion by BC3H-1 cells. In summary, there appear to be at least two intracellular signaling mechanisms controlling IGFBP-4 and IGFBP-5 secretion by L6 and BC3H-1 muscle cells. IGFBP secretion by L6 cells is stimulated by both insulin/IGF-I and cAMP-dependent pathways, whereas IGFBP-5 secretion by BC3H-1 cells is stimulated only by the insulin/IGF pathway. IGFBP secretion by both cell lines can be decreased by agents which depress cAMP levels. Our results suggest that two divergent but synergistic pathways modulate IGFBP production and these mechanisms can potentially modulate IGF activity during muscle cell proliferation and differentiation. J. Cell. Physiol. 174:293–300, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Liu LP  Hong L  Yu L  Li HY  Ding DZ  Jin SJ  Cui X 《Life sciences》2012,90(19-20):793-798
AimsOuabain has been reported to increase the secretion of atrial natriuretic peptide (ANP) in vitro. However, the mechanism by which ouabain increases ANP secretion is not well known. Therefore, the purpose of the present study was to investigate the underlying mechanism of ouabain-stimulated ANP secretion.Main methodsA perfused beating rabbit atrial model was used. The ANP and ET-1 levels in the atrial perfusates were measured by radioimmunoassays.Key findingsOuabain (1.0, 3.0 and 6.0 μmol/L) significantly increased atrial ANP secretion in a dose-dependent manner, while the endothelin (ET)-1 levels were increased by the higher doses (3.0 and 6.0 μmol/L) of ouabain. Ouabain-increased atrial ET-1 release was blocked by PD98059 (30.0 μmol/L), an inhibitor of mitogen-activated protein kinase (MAPK). Nifedipine (1.0 μmol/L), an inhibitor of L-type Ca2+ channels, completely abolished ouabain-increased ANP secretion without changing the ouabain-induced atrial dynamics. KB-R7943 (3.0 μmol/L), an inhibitor of Na+–Ca2+ exchangers, completely blocked the effects of ouabain-increased atrial dynamics, but did not modulate ouabain-increased ANP secretion. ET-1 significantly stimulated atrial ANP release in a dose-dependent manner. The effects of ET-1 and ouabain on ANP secretion were completely blocked by BQ788 (0.3 μmol/L), an inhibitor of ET-1 type B (ETB) receptors, but not by BQ123 (0.3 μM), an inhibitor of ET-1 type A receptors. Ouabain-increased atrial ANP secretion was blocked by PD98059 and indomethacin (30.0 μmol/L), an inhibitor of cyclooxygenase.SignificanceOuabain significantly stimulated atrial ANP secretion via an ET-1-ETB receptor-mediated pathway involving MAPK signaling pathway activation and prostaglandin formation.  相似文献   

20.
Prolactin secretion is controlled by the hypothalamus through different neurotransmitters which interact with multiple receptor subtypes. The discovery of different families of receptors for serotonin (5-HT1-5-HT7) and excitatory aminoacids (NMDA,KA,AMPA and metabotropic receptors) ilustrates the complexity of this regulation. Moreover, in the rat the role of different neurotransmitters changes during pubertal development. Present experiments were carried out to analyse the interactions between AMPA and serotoninergic receptors in the control of prolactin secretion in prepubertal male rats. For this purpose, 16 and 23-day old male rats were treated with 5-hydroxytryptophan (5-HTP, precursor of serotonin synthesis) plus fluoxetine (blocker of serotonin reuptake), 8-OH-DPAT (agonist of 5-HT1A receptors), DOI and α-Me-5-HT (agonists of 5-HT2 receptors), 1-phenylbiguanide (agonist of 5-HT3 receptors) alone or in combination with AMPA (agonist of AMPA receptors). The results obtained indicate that: (a) activation of 5-HT1A receptors stimulated PRL secretion on day 16 and inhibited it on day 23; activation of 5-HT2 receptors stimulated PRL secretion on days 16 and 23, whereas activation of 5-HT3 receptors inhibited PRL release only on day 23; (b) activation of AMPA receptors inhibited PRL secretion on day 23, but not on day 16 and (c) a cross-talk is apparent between 5-HT2 and AMPA receptors in the regulation of PRL secretion, the stimulatory effect of DOI being blocked by AMPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号