首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the Anopheles gambiae complex are major malaria vectors in Africa. We tested the hypothesis that the range and relative abundance of the two major vectors in the complex, An. gambiae sensu stricto and An. arabiensis, could be defined by climate. Climate was characterized at mosquito survey sites by extracting data for each location from climate surfaces using a Geographical Information System. Annual precipitation, together with annual and wet season temperature, defined the ranges of both vectors and were used to map suitable climate zones. Using data from West Africa, we found that where the species were sympatric, An. gambiae s.s. predominated in saturated environments, and An. arabiensis was more common in sites subject to desiccation (r2 = 0.875, p < 0.001). We used the nonlinear equation that best described this relationship to map habitat suitability across Africa. This simple model predicted accurately the relative abundance of both vectors in Tanzania (rs = 0.745, p = 0.002), where species composition is highly variable. The combined maps of species'' range and relative abundance showed very good agreement with published maps. This technique represents a new approach to mapping the distribution of malaria vectors over large areas and may facilitate species-specific vector control activities.  相似文献   

2.
Aim Models relating species distributions to climate or habitat are widely used to predict the effects of global change on biodiversity. Most such approaches assume that climate governs coarse‐scale species ranges, whereas habitat limits fine‐scale distributions. We tested the influence of topoclimate and land cover on butterfly distributions and abundance in a mountain range, where climate may vary as markedly at a fine scale as land cover. Location Sierra de Guadarrama (Spain, southern Europe) Methods We sampled the butterfly fauna of 180 locations (89 in 2004, 91 in 2005) in a 10,800 km2 region, and derived generalized linear models (GLMs) for species occurrence and abundance based on topoclimatic (elevation and insolation) or habitat (land cover, geology and hydrology) variables sampled at 100‐m resolution using GIS. Models for each year were tested against independent data from the alternate year, using the area under the receiver operating characteristic curve (AUC) (distribution) or Spearman's rank correlation coefficient (rs) (abundance). Results In independent model tests, 74% of occurrence models achieved AUCs of > 0.7, and 85% of abundance models were significantly related to observed abundance. Topoclimatic models outperformed models based purely on land cover in 72% of occurrence models and 66% of abundance models. Including both types of variables often explained most variation in model calibration, but did not significantly improve model cross‐validation relative to topoclimatic models. Hierarchical partitioning analysis confirmed the overriding effect of topoclimatic factors on species distributions, with the exception of several species for which the importance of land cover was confirmed. Main conclusions Topoclimatic factors may dominate fine‐resolution species distributions in mountain ranges where climate conditions vary markedly over short distances and large areas of natural habitat remain. Climate change is likely to be a key driver of species distributions in such systems and could have important effects on biodiversity. However, continued habitat protection may be vital to facilitate range shifts in response to climate change.  相似文献   

3.
Abstract

The purpose of this investigation was to model the distribution of the fishtail xate palm (´Chamaedorea ernesti‐augusti) and to investigate the effectiveness of using geostatistical techniques to map its distribution. The leaves of the Central American xate palm C. ernesti‐augusti are now extensively cut for the flori‐cultural industry; across its range, populations are being over‐harvested. In Central America, the Greater Maya Mountains (GMM), Belize are widely believed to be an abundance ‘hotspot’ for this species. In total, 220 sample sites were systematically located throughout the GMM, based on a fixed distance interval using the accessible track/road network. Species counts and environmental data were collected from each 20 m × 20 m plot. Statistical analyses were carried out using GenStat and Arc‐GIS. We used several semivariogram models, within bespoke GenStat procedures, to map the log‐transformed xate abundance data. Validation of models used the official GenStat Kcross‐validation procedure. Of the six models investigated in detail, the ‘Bounded Linear’ model outperformed all others and most effectively represented the spatial distribution of C. ernesti‐augusti. Environmental factors were found to have low statistical significance for the distribution of the xate palm. The predicted map shows that the geographic abundance was dominated by low xate counts; xat´ abundance values for this region appear to have been consistently overestimated in the literature. Our study showed the effectiveness of using local modelling techniques to map xate abundances and reveal local abundance hotspots. It highlighted areas needing further survey work and the need for collecting more environmental data to improve the prediction of plant distribution in this region using niche and/or co‐kriging modelling approaches. Our study suggested that the xate resource in Belize needs a careful conservation approach.  相似文献   

4.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   

5.
The potential for ecological niche models (ENMs) to accurately predict species' abundance and demographic performance throughout their geographic distributions remains a topic of substantial debate in ecology and biogeography. Few studies simultaneously examine the relationship between ENM predictions of environmental suitability and both a species' abundance and its demographic performance, particularly across its entire geographic distribution. Yet, studies of this type are essential for understanding the extent to which ENMs are a viable tool for identifying areas that may promote high abundance or performance of a species or how species might respond to future climate conditions. In this study, we used an ensemble ecological niche model to predict climatic suitability for the perennial forb Astragalus utahensis across its geographic distribution. We then examined relationships between projected climatic suitability and field‐based measures of abundance, demographic performance, and forecasted stochastic population growth (λs). Predicted climatic suitability showed a J‐shaped relationship with A. utahensis abundance, where low‐abundance populations were associated with low‐to‐intermediate suitability scores and abundance increased sharply in areas of high predicted climatic suitability. A similar relationship existed between climatic suitability and λs from the center to the northern edge of the latitudinal distribution. Patterns such as these, where density or demographic performance only increases appreciably beyond some threshold of climatic suitability, support the contention that ENM‐predicted climatic suitability does not necessarily represent a reliable predictor of abundance or performance across large geographic regions.  相似文献   

6.
Question: Can the distribution and abundance of Vaccinium myrtillus be reasonably predicted with soil nutritional and climatic factors? Location: Forests of France. Methods: We used Braun‐Blanquet abundance/dominance information for Vaccinium myrtillus on 2905 forest sites extracted from the phyto‐ecological database EcoPlant, to characterize the species ecological response to climatic and edaphic factors and to predict its cover/abundance at the national scale. The link between cover/abundance of the species and climatic (65 monthly and annual predictors concerning temperature, precipitation, radiation, potential evapotranspiration, water balance) and edaphic (two predictors: soil pH and C:N ratio) factors was investigated with proportional odds models. We evaluated the quality of our model with 9830 independent relevés extracted from Sophy, a large phytosociological database for France. Results: In France, Vaccinium myrtillus is at the southern limit of its European geographic range and three environmental factors (mean annual temperature, soil pH and C:N ratio) allow prediction of its distribution and abundance in forests with high success rates. The species reveals a preference for colder sites (especially mountains) and nutritionally poor soils (low pH and high C:N ratio). A predictive map of its geographic range reveals that the main potential habitats are mountains and northwestern France. The potential habitats with maximal expected abundance are the Vosges and the Massif central mountains, which are both acidic mountains. Conclusions: Complete niche models including climate and soil nutritional conditions allow an improvement of the spatial prediction of plant species abundance at a broad scale. The use of soil nutritional variables in distribution models further leads to an improvement in the prediction of plant species habitats within their geographical range.  相似文献   

7.
Forest responses to climate change will depend on demographic impacts in the context of competition. Current models used to predict species responses, termed climate envelope models (CEMs), are controversial, because (i) calibration and prediction are based on correlations in space (CIS) between species abundance and climate, rather than responses to climate change over time (COT), and (ii) they omit competition. To determine the relative importance of COT, CIS, and competition for light, we applied a longitudinal analysis of 27 000 individual trees over 6–18 years subjected to experimental and natural variation in risk factors. Sensitivities and climate and resource tracking identify which species are vulnerable to these risk factors and in what ways. Results show that responses to COT differ from those predicted based on CIS. The most important impact is the effect of spring temperature on fecundity, rather than any input variable on growth or survival. Of secondary importance is growing season moisture. Species in the genera Pinus, Ulmus, Magnolia, and Fagus are particularly vulnerable to climate variation. However, the effect of competition on growth and mortality risk exceeds the effects of climate variation in space or time for most species. Because sensitivities to COT and competition are larger than CIS, current models miss the most important effects. By directly comparing sensitivity to climate in time and space, together with competition, the approach identifies which species are sensitive to climate change and why, including the heretofore overlooked impact on fecundity.  相似文献   

8.
Co‐occurrence of closely related species is often explained through resource partitioning, where key morphological or life‐history traits evolve under strong divergent selection. In bumble bees (genus Bombus), differences in tongue lengths, nest sites, and several life‐history traits are the principal factors in resource partitioning. However, the buff‐tailed and white‐tailed bumble bee (Bombus terrestris and B. lucorum respectively) are very similar in morphology and life history, but their ranges nevertheless partly overlap, raising the question how they are ecologically divergent. What little is known about the environmental factors determining their distributions stems from studies in Central and Western Europe, but even less information is available about their distributions in Eastern Europe, where different subspecies occur. Here, we aimed to disentangle the broad habitat requirements and associated distributions of these species in Romania and Bulgaria. First, we genetically identified sampled individuals from many sites across the study area. We then not only computed species distributions based on presence‐only data, but also expanded on these models using relative abundance data. We found that B. terrestris is a more generalist species than previously thought, but that B. lucorum is restricted to forested areas with colder and wetter climates, which in our study area are primarily found at higher elevations. Both vegetation parameters such as annual mean Leaf Area Index and canopy height, as well as climatic conditions, were important in explaining their distributions. Although our models based on presence‐only data suggest a large overlap in their respective distributions, results on their relative abundance suggest that the two species replace one another across an environmental gradient correlated to elevation. The inclusion of abundance enhances our understanding of the distribution of these species, supporting the emerging recognition of the importance of abundance data in species distribution modeling.  相似文献   

9.
Tuna are globally distributed species of major commercial importance and some tuna species are a major source of protein in many countries. Tuna are characterized by dynamic distribution patterns that respond to climate variability and long‐term change. Here, we investigated the effect of environmental conditions on the worldwide distribution and relative abundance of six tuna species between 1958 and 2004 and estimated the expected end‐of‐the‐century changes based on a high‐greenhouse gas concentration scenario (RCP8.5). We created species distribution models using a long‐term Japanese longline fishery dataset and two‐step generalized additive models. Over the historical period, suitable habitats shifted poleward for 20 out of 22 tuna stocks, based on their gravity centre (GC) and/or one of their distribution limits. On average, tuna habitat distribution limits have shifted poleward 6.5 km per decade in the northern hemisphere and 5.5 km per decade in the southern hemisphere. Larger tuna distribution shifts and changes in abundance are expected in the future, especially by the end‐of‐the‐century (2080–2099). Temperate tunas (albacore, Atlantic bluefin, and southern bluefin) and the tropical bigeye tuna are expected to decline in the tropics and shift poleward. In contrast, skipjack and yellowfin tunas are projected to become more abundant in tropical areas as well as in most coastal countries' exclusive economic zones (EEZ). These results provide global information on the potential effects of climate change in tuna populations and can assist countries seeking to minimize these effects via adaptive management.  相似文献   

10.
In large parts sub-Saharan Africa, tsetse flies, the vectors of African human or animal trypanosomiasis, are, or will in the foreseeable future, be confined to protected areas such as game or national parks. Challenge of people and livestock is likely to occur at the game/livestock/people interface of such infested areas. Since tsetse control in protected areas is difficult, management of trypanosomiasis in people and/or livestock requires a good understanding of tsetse population dynamics along such interfaces. The Nkhotakota Game Reserve, an important focus of human trypanosomiasis in Malawi, is a tsetse-infested protected area surrounded by a virtually tsetse-free zone. The abundance of tsetse (Glossina morsitans morsitans) along the interface, within and outside the game reserve, was monitored over 15 months using epsilon traps. A land cover map described the vegetation surrounding the traps. Few flies were captured outside the reserve. Inside, the abundance of tsetse at the interface was low but increased away from the boundary. This uneven distribution of tsetse inside the reserve is attributed to the uneven distribution of wildlife, the main host of tsetse, being concentrated deeper inside the reserve. Challenge of people and livestock at the interface is thus expected to be low, and cases of trypanosomiasis are likely due to people and/or livestock entering the reserve. Effective control of trypanosomiasis in people and livestock could be achieved by increasing the awareness among people of dangers associated with entering the reserve.  相似文献   

11.
Towards an understanding of the Holocene distribution of Fagus sylvatica L.   总被引:1,自引:1,他引:1  
Aim Understanding the driving forces and mechanisms of changes in past plant distribution and abundance will help assess the biological consequences of future climate change scenarios. The aim of this paper is to investigate whether modelled patterns of climate parameters 6000 years ago can account for the European distribution of Fagus sylvatica at that time. Consideration is also given to the role of non‐climatic parameters as driving forces of the Holocene spread and population expansion of F. sylvatica. Location Europe. Methods European distributions were simulated using a physiologically‐based bioclimatic model (STASH) driven by three different atmospheric general circulation model (AGCM) outputs for 6000 years ago. Results The three simulations generally showed F. sylvatica to have potentially been as widespread 6000 years ago as it is today, which gives a profound mismatch with pollen‐based reconstructions of the F. sylvatica distribution at that time. The results indicate that drier conditions during the growing season 6000 years ago could have caused a restriction of the range in the south. Poorer growth conditions with consequently reduced competitive ability were modelled for large parts of France. Main conclusions Consideration of the entire European range of F. sylvatica showed that no single driving force could account for the observed distributional limits 6000 years ago, or the pattern of spread during the Holocene. Climatic factors, particularly drought during the growing season, are the likely major determinants of the potential range. Climatic factors are regionally moderated by competition, disturbance effects and the intrinsically slow rate of population increase of F. sylvatica. Dynamic vegetation modelling is needed to account for potentially important competitive interactions and their relationship with changing climate. We identify uncertainties in the climate and pollen data, as well as the bioclimatic model, which suggest that the current study does not identify whether or not climate determined the distribution of F. sylvatica 6000 years ago. Pollen data are better suited for comparison with relative abundance gradients rather than absolute distributional limits. These uncertainties from a study of the past, where we have information about plant distribution and abundance, argue for extreme caution in making forecasts for the future using equilibrium models.  相似文献   

12.
ABSTRACT

Capsule: The distribution range of the European Roller Coracias garrulus has undergone large changes over geological times, but although the species is warm-adapted, the human induced climate change is predicted to affect negatively the range of the currently large populations.

Aim: Information on species-specific vulnerability to climate change is crucial not only for designing interventions and setting conservation goals, but also to inform conservation decision-making. Our goal was to map climate suitability for the European Roller in the Western Palaearctic under current climate, and for past (last glacial maximum and mid-Holocene) and future (2050 and 2070) climate scenarios.

Methods: We used MaxEnt for species distribution modelling based on the reconstructed distribution map of the species.

Results: Our results suggest that during glacial periods Rollers persisted in small southern refugia, and then spread and colonized northern latitudes during the mid-Holocene. In the future, our models forecast a shift in climatically suitable range towards northern latitudes and an overall small range contraction (4.5–5.5%). Warmer temperatures will increase climate suitability in northern countries where the species is currently declining or became locally extinct. On the other hand, wide suitable areas under current climatic conditions are predicted to become unsuitable in the future (35–38% by 2050 and 2070, respectively), significantly impacting large populations such as those in Romania, Spain, Bulgaria and Hungary. French and Italian populations are identified to be future key populations for Roller conservation.

Conclusions: Our findings suggest that future climate changes will likely amplify the impacts of existing threats on the majority of large European Roller populations in Europe.  相似文献   

13.
The Convention on Biological Diversity requires that member nations establish protected area networks that are representative of the country's biodiversity. The identification of priority sites to achieve outstanding representation targets is typically accomplished through formal conservation assessments. However, representation in conservation assessments or gap analyses has largely been interpreted based on a static view of biodiversity. In a rapidly changing climate, the speed of changes in biodiversity distribution and abundance is causing us to rethink the viability of this approach. Here we describe three explicit strategies for climate change adaptation as part of national conservation assessments: conserving the geophysical stage, identifying and protecting climate refugia, and promoting cross‐environment connectivity. We demonstrate how these three approaches were integrated into a national terrestrial conservation assessment for Papua New Guinea, one of the most biodiverse countries on earth. Protected areas identified based on representing geophysical diversity were able to capture over 90% of the diversity in vegetation communities, suggesting they could help protect representative biodiversity regardless of changes in the distribution of species and communities. By including climate change refugia as part of the national conservation assessment, it was possible to substantially reduce the amount of environmental change expected to be experienced within protected areas, without increasing the overall cost of the protected area network. Explicitly considering environmental heterogeneity between adjacent areas resulted in protected area networks with over 40% more internal environmental connectivity. These three climate change adaptation strategies represent defensible ways to guide national conservation priority given the uncertainty that currently exists in our ability to predict climate changes and their impacts. Importantly, they are also consistent with data and expertise typically available during national conservation assessments, including in developing nations. This means that in the vast majority of countries, these strategies could be implemented immediately.  相似文献   

14.
The mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae), the principal vector of malaria in West Africa, comprises several chromosomal forms (e.g. Bissau, Forest, Mopti, Savanna) associated with climatic zones. Here we show how climate data can be used to map the geographical distribution of these chromosomal forms. The climate at 144 sites surveyed for mosquitoes in West Africa between 1971 and 92 was determined using computerized climate surfaces. Forest and Bissau forms occurred at relatively wet sites: median annual precipitation 1325 mm and 1438 mm, respectively, interquartile ranges (IQR) 1144-1858 mm and 1052-1825 mm), whilst the Mopti form was found at dry sites (annual 938 mm, IQR 713-1047 mm) and the Savanna form at sites intermediate between the wet and dry forms (annual 1067 mm, IQR 916-1279). Logistic regression analyses of the climate variables were carried out on a stratified random sample of half the sites. The resulting models correctly classified over 80% of the sites for presence or absence of each chromosomal form. When these models were tested against excluded sites they were also correct at over 80% of sites. The combined data produced models that were correct at over 86% of sites. Mean annual precipitation, evapotranspiration, minimum temperature and maximum temperature were the most important climate variables correlated with the distribution of these forms of An. gambiae. We used the logistic models to map the distribution of each chromosomal form within the reported range for An. gambiae s.s. in West Africa employing a geographical information system. Our maps indicate that each chromosomal form favours particular climate envelopes in well-defined ecoclimatic zones, although these forms are sympatric at the edges of their ranges. This study demonstrates that climate can be used to map the distribution of chromosomal forms of insects across large areas.  相似文献   

15.
Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.  相似文献   

16.
The geographic distribution of plant species is already being affected by climate change. Cropping patterns of edible plant species and their wild relatives will also be affected, making it important to predict possible changes to their distributions in the future. Currently, species distribution models are valuable tools that allow the estimation of species’ potential distributions, in the recent past as well as during other time spans for which climate data have been obtained. With the aim of evaluating how species distributions respond to current and future climate changes, in this work species distribution models were generated for two cultivated species of the Porophyllum genus (Asteraceae), known commonly as ‘pápalos' or ‘pápaloquelites', as well as their Mexican wild relatives, at five points in time (21,000 years ago, present, 2020, 2050, and 2080). Using a database of 1442 entries for 16 species of Porophyllum and 19 environmental variables, species distribution models were constructed for each time period using the Maxent modelling algorithm; those constructed for the future used a severe climate change scenario. The results demonstrate contrasting effects between the two cultivated species; for P. linaria, the future scenario suggests a decrease in distribution area, while for P. macrocephalum distribution is predicted to increase. Similar trends are observed in their wild relatives, where 11 species will tend to decrease in distribution area, while three are predicted to increase. It is concluded that the most important agricultural areas where the cultivated species are grown will not be greatly affected, while the areas inhabited by the wild species will. However, while the results suggest that climate change will affect the distribution of the cultivated species in contrasting ways, evaluations at finer scales are recommended to clarify the impact within cultivation zones.  相似文献   

17.
气候变化是当前全球生物多样性面临的最大威胁之一,对物种地理分布格局具有较大影响。东北森林物种丰富度较高,目前尚缺乏基于主要树种、未来不同气候模式的综合研究。基于12种建群树种的分布数据及23个环境变量(19个生物气候因子、土地利用类型、海拔、坡度、坡向)数据,应用MaxEnt模型首次对东北地区乔木树种在3种气候变化情景下(SSP126可持续路径、SSP245中间路径、SSP585化石燃料为主发展路径)的潜在丰富度分布格局、主导环境变量以及树种损失、获得和周转情况进行了预测。结果表明:不同未来气候情景下东北地区各树种的潜在分布变化存在差异,适生区面积减小的树种有:兴安落叶松、山杨、春榆、白桦、水曲柳、胡桃楸、蒙古栎、辽东桤木,减小幅度达到10%-30%;适生区面积变化不大的树种有:红皮云杉、樟子松、黄檗,多数情况下低、中和高适生区面积变化发生了抵消,导致总适生区面积变化不大;适生区增加的树种有:红松,增加幅度达20%左右。环境因素将影响东北地区乔木树种潜在适宜性分布,其中,降水因素对东北地区树种分布格局起关键作用,尤其是降水量季节性变化,是影响东北地区50%左右树种分布格局的主导环境因子。东北地区乔木树种在无迁移和SSP585气候情景下受威胁程度相对较高,而在SSP126气候情景下大多处于低风险状态;物种迁移假设的对物种受威胁程度的影响先于气候变化情景的影响,树种发生适度迁移能够缓解树种受威胁的状况。网格单元中物种损失和周转的预测表明,东北地区树种高周转率主要由树种高损失率造成,损失率较高的地区往往树种周转率也相对较高。预测气候变化对东北地区树木分布格局的影响,有助于制定更有效的气候变化适应策略,以促进东北地区树木的可持续发展。  相似文献   

18.
Climate models provide estimates of climatic change over periods of time in the ancient past. Macrophysical climate models (MCM) differ from the more widely used general circulation models (GCM), in that MCMs provide temporally high-resolution (~ 100 years) and site-specific estimations of monthly values of climate variables such as temperature and precipitation. In this paper, seasonal changes in climate variables are modeled for six 14C-dated fossil localities in North America. Five of these localities represent the time of maximum extent of ice during the most recent glacial episode, the Full Glacial (25 + –15 ka), including one at the peak of the Last Glacial Maximum (17–15 ka). The other locality represents the time as the ice began to recede, the Late Glacial (15–11 ka). Seasonal variations in temperature and precipitation modeled by MCM are herein compared with interpretations of seasonal variation based upon oxygen isotopes from serially sampled hypsodont teeth (mostly Equus and Bison) collected from each of these localities. Additionally, the MCM-modeled seasonal variations are used to predict the expected abundances of different plant functional groups (PFG) during those times, especially C3 and C4 functional groups, using modern relationships. These predictions are compared with carbon isotopic values from the same teeth. The importance of atmospheric pCO2 for the relative abundance of plants utilizing the C4 metabolic pathway is discussed, given that glacial episodes are known to have been times of lower atmospheric pCO2. Interpretations of seasonal variability and the relative abundance of C3 versus C4 vegetation based upon isotopes from tooth enamel are in broad agreement with predictions using the MCM and the modern distribution of PFGs with climate variables. The influence of pCO2 on the distribution of C4 vegetation during glacial times appears to be negligible.  相似文献   

19.
Species distribution models often suggest strong links between climate and species' distribution boundaries and project large distribution shifts in response to climate change. However, attributing distribution shifts to climate change requires more than correlative models. One idea is to examine correlates of the processes that cause distribution shifts, namely colonization and local extinction, by using dynamic occupancy models. The Cape Rock-jumper (Chaetops frenatus) has disappeared over most of its distribution where temperatures are the highest. We used dynamic occupancy models to analyse Cape Rock-jumper distribution with respect to climate (mean temperature and precipitation over the warmest annual quarter), vegetation (proportion of natural vegetation, fynbos) and land-use type (protected areas). Detection/non-detection data were collected over two phases of the Southern African Bird Atlas Project (SABAP): 1987–1991 (SABAP1) and 2008–2014 (SABAP2). The model described the contraction of the Cape Rock-jumper's distribution between SABAP1 and SABAP2 well. Occupancy probability during SABAP1 increased with the proportion of fynbos and protected area per grid cell, and decreased with increases in mean temperature and precipitation over the warmest annual quarter. Mean extinction probability increased with mean temperature and precipitation over the warmest annual quarter, although the associated confidence intervals were wide. Nonetheless, our results showed a clear correlation between climate and the distribution boundaries of the Cape Rock-jumper, and in particular, the species' aversion for higher temperatures. The data were less conclusive on whether the observed range contraction was linked to climate change or not. Examining the processes underlying distribution shifts requires large datasets and should lead to a better understanding of the drivers of these shifts.  相似文献   

20.
The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate‐induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread‐rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号