首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacteriophage T4 gene 43 codes for the viral DNA polymerase. We report here the sequence of gene 43 and about 70 nucleotides of 5'- and 3'-flanking sequences, determined by both DNA and RNA sequencing. We have also purified T4 DNA polymerase from T4 infected Escherichia coli and from E. coli containing a gene 43 overexpression vector. A major portion of the deduced amino acid sequence has been verified by peptide mapping and sequencing of the purified DNA polymerase. All these results are consistent with T4 DNA polymerase having 898 amino acids with a calculated Mr = 103,572. Comparison of the primary structure of T4 DNA polymerase with the sequence of other procaryotic and eucaryotic DNA polymerases indicates that T4 DNA polymerase has regions of striking similarity with animal virus DNA polymerases and human DNA polymerase alpha. Surprisingly, T4 DNA polymerase shares only limited similarity with E. coli polymerase I and no detectable similarity with T7 DNA polymerase. Based on the location of specific mutations in T4 DNA polymerase and the conservation of particular sequences in T4 and eucaryotic DNA polymerases, we propose that the NH2-terminal half of T4 DNA polymerase forms a domain that carries out the 3'----5' exonuclease activity whereas the COOH-terminal half of the polypeptide contains the dNTP-binding site and is necessary for DNA synthesis.  相似文献   

3.
To further our understanding of the structure and function of the vaccinia virus DNA polymerase, we have performed fine genetic analysis of three mutants with lesions in the polymerase gene. By performing marker rescue analysis with DNA fragments of decreasing size, each lesion was localized to within 500 base pairs of DNA. The relevant regions of the mutant alleles were then cloned and subjected to DNA sequence analysis, which allowed the assignment of a single nucleotide and amino acid change to each mutant. As well as providing structure-function correlations germane to an understanding of polymerase activity, these data have provided insights into the frequency and possible mechanisms of viral homologous recombination.  相似文献   

4.
We have reported the complete sequence of the DNA polymerase gene from the virus that infected a filamentous brown alga, Feldmannia sp. (FsV). The DNA polymerase gene from FsV encoded 986 amino acids and contained all the conserved motifs of 3'-5' exonuclease domains and catalytic domains found in B-family (α-like) DNA polymerases. The codons for the FsV DNA polymerase appeared to have some bias toward guanine/cytosine (G/C) in the third position. The phylogenetic analysis of the FsV DNA polymerase gene and other viral DNA polymerase genes indicated that FsV belongs to a family of algal viruses recently defined as Phycodnaviridae.  相似文献   

5.
6.
A Mustafa  L Yuen 《DNA sequence》1991,2(1):39-45
A degenerate oligonucleotide probe corresponding to a highly conserved amino acid sequence in several DNA polymerases was used to locate the DNA polymerase gene in the Choristoneura biennis entomopoxvirus. Southern blot analysis of the entomopoxvirus genome using the degenerate oligonucleotide probe showed specific interaction between the probe and an eight kilobasepair EcoRI fragment from the entomopoxvirus genome. Sequencing this EcoRI fragment revealed an open reading frame 2892 nucleotides in length, capable of encoding a protein about 115 kilodaltons. Homology search of this open reading frame against other proteins indicated a high degree of homology in four distinct regions with DNA polymerases from other organisms. The highest degree of homology (24.9% at the amino acid level) was found between the vaccinia DNA polymerase gene and the entomopoxvirus open reading frame.  相似文献   

7.
T4 DNA topoisomerase is a type II enzyme and is thought to be required for normal T4 DNA replication T4 gene 39 codes for the largest of the three subunits of T4 DNA topoisomerase. I have determined the nucleotide sequence of a region of 2568 nucleotides of T4 DNA which includes gene 39. The location of the gene was established by the identification of the first fifteen amino acids in the large open reading frame in the DNA sequence as those found at the amino-terminus of the purified 39-protein. The coding region of gene 39 has 1560 bases, and it is followed by two in-frame stop codons. The gene is preceded by a typical Shine-Dalgarno sequence as well as possible promoter sequences for E. coli RNA polymerase. T4 39-protein consists of 520 amino acids, and it has a calculated molecular weight of 58,478. By comparing the amino acid sequences, T4 39-protein is found to share homology with the gyrB subunit of DNA gyrase. This suggests that these topoisomerase subunits may be equivalent functionally. Some of the characteristics of the 39-protein and its structural features predicted from the DNA sequence data are discussed.  相似文献   

8.
根据一些病毒的DNA多聚酶氨基酸序列中特有的保守序列VYGDTD设计的简并寡核苷酸 ,经地高辛标记后与对虾白斑综合征病毒基因库克隆杂交 ,筛选出一段长度为 70 7bp的EcoRI基因片段 ,该片段在一个开放阅读框内。并含DNA多聚酶B家族特有的保守序列YGDTDS。经与基因库比较 ,其氨基酸序列与藻类DNA病毒科 (Phycodnaviridae)的几株藻类病毒的DNA多聚酶片段有部分相似 ,因此推测该核苷酸片段为对虾白斑综合征病毒DNA多聚酶基因的部分序列。  相似文献   

9.
We have cloned the cDNA for the eighth human DNA polymerase, DNA polymerase θ. The human cDNA encodes a putative DNA polymerase of 1762 amino acids with a calculated molecular mass of 198 kDa. The derived protein sequence is homologous to the Drosophila melanogaster mus308 protein product, a putative DNA polymerase-helicase involved in repair of interstrand crosslinks. The C-terminal region contains the canonical DNA polymerase motifs A, B, and C found in the family A type of DNA polymerases, which includes Escherichia coli polymerase I. The N-terminal region contains a putative ATP binding domain but not motifs for a helicase. The gene was mapped by radiation hybrid analysis to chromosome 3q within an interval flanked by proximal marker D3S1303 and distal marker D3S3576 and, based on proximity to a gene that has been mapped cytogenetically, within band 3q13.31.  相似文献   

10.
The analysis of the deduced amino acid sequence of the herpes simplex virus type 1 (HSV-1) DNA polymerase reported here suggests that the polymerase structure consists of domains carrying separate biological functions. The HSV-1 enzyme is known to possess 5'-3'-exonuclease (RNase H), 3'-5'-exonuclease, and DNA polymerase catalytic activities. Sequence analysis suggests an arrangement of these activities into distinct domains resembling the organization of Escherichia coli polymerase I. In order to more precisely define the structure and C-terminal limits of a putative catalytic domain responsible for the DNA polymerization activity of the HSV-1 enzyme, we have undertaken in vitro mutagenesis and computer modeling studies of the HSV-1 DNA polymerase gene. Sequence analysis predicts that the major DNA polymerization domain of the HSV-1 enzyme will be contained between residues 690 and 1100, and we present a three-dimensional model of this region, on the basis of the X-ray crystallographic structure of the E. coli polymerase I. Consistent with these structural and modeling studies, deletion analysis by in vitro mutagenesis of the HSV-1 DNA polymerase gene expressed in Saccharomyces cerevisiae has confirmed that certain amino acids from the C terminus (residues 1073 to 1144 and 1177 to 1235) can be deleted without destroying HSV-1 DNA polymerase catalytic activity and that the extreme N-terminal 227 residues are also not required for this activity.  相似文献   

11.
12.
J Zhang  D W Chung  C K Tan  K M Downey  E W Davie  A G So 《Biochemistry》1991,30(51):11742-11750
The 125- and 48-kDa subunits of bovine DNA polymerase delta have been isolated by SDS-polyacrylamide gel electrophoresis and demonstrated to be unrelated by partial peptide mapping with N-chlorosuccinimide. A 116-kDa polypeptide, usually present in DNA polymerase delta preparations, was shown to be a degraded form of the 125-kDa catalytic subunit. Amino acid sequence data from Staphylococcus aureus V8 protease, cyanogen bromide, and trypsin digestion of the 125- and 116-kDa polypeptides were used to design primers for the polymerase chain reaction to determine the nucleotide sequence of a full-length cDNA encoding the catalytic subunit of bovine DNA polymerase delta. The predicted polypeptide is 1106 amino acids in length with a calculated molecular weight of 123,707. This is in agreement with the molecular weight of 125,000 estimated from SDS-polyacrylamide gel electrophoresis. Comparison of the deduced amino acid sequence of the catalytic subunit of bovine DNA polymerase delta with that of its counterpart from Saccharomyces cerevisiae showed that the proteins are 44% identical. The catalytic subunit of bovine DNA polymerase delta contains the seven conserved regions found in a number of bacterial, viral, and eukaryotic DNA polymerases. It also contains five additional regions that are highly conserved between bovine and yeast DNA polymerase delta, but these regions share little or no homology with the alpha polymerases. Four of these additional regions are also highly homologous to the herpes virus family of DNA polymerases, whereas one region is not homologous to any other DNA polymerase that has been sequenced thus far.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Bacteriophage T4 gene 44 protein is a DNA polymerase accessory protein which is required for T4 DNA replication. We have isolated the gene for 44 protein from a previously constructed lambda-T4 hybrid phage (Wilson, G. G., Tanyashin, V. I., and Murray, N. E. (1977) Mol. Gen. Genet. 156, 203-214). We report here the nucleotide sequence of gene 44 and about 60 nucleotides 5' upstream from its coding region, which is immediately adjacent to gene 45. We have also purified 44 protein from T4-infected cells and submitted it to extensive protein chemistry characterization. Thus, considerable portions of the protein sequence predicted from the DNA sequence were confirmed by direct protein sequencing of peptides or by matching amino acid compositions of purified peptides. A total of 84% of the predicted amino acids was confirmed by the protein data. These studies indicate that gene 44 codes for a polypeptide containing 319 amino acids, with a calculated Mr = 35,371. The coding region of gene 44 is preceded by a potential regulatory region containing sequences homologous to the Escherichia coli (-10) RNA polymerase binding region and to a conserved sequence at -25 to -30 found in other T4 middle genes. In addition, there are sequence similarities in the translation initiation regions of genes 44, 45, and rIIB, all of which are subject to regulation by regA protein.  相似文献   

14.
Eukaryotic DNA ligases   总被引:9,自引:0,他引:9  
Recent studies on eukaryotic DNA ligases are briefly reviewed. The two distinguishable enzymes from mammalian cells, DNA ligase I and DNA ligase II, have been purified to homogeneity and characterized biochemically. Two distinct DNA ligases have also been identified in Drosophila melanogaster embryos. The genes encoding DNA ligases from Schizosaccharomyces pombe, Saccharomyces cerevisiae and vaccinia virus have been cloned and sequenced. These 3 proteins exhibit about 30% amino acid sequence identity; the 2 yeast enzymes share 53% amino acid sequence identity or conserved changes. Altered DNA ligase I activity has been found in cell lines from patients with Bloom's syndrome, although a causal link between the enzyme deficiency and the disease has not yet been proven.  相似文献   

15.
The primary sequence of human DNA polymerase alpha deduced from the full-length cDNA contains regions of striking similarity to sequences in replicative DNA polymerases from Escherichia coli phages PRD1 and T4, Bacillus phage phi 19, yeast DNA polymerase I, yeast linear plasmid pGKL1, maize S1 mitochondrial DNA, herpes family viruses, vaccinia virus, and adenovirus. The conservation of these homologous regions across this vast phylogenetic expanse indicates that these prokaryotic and eukaryotic DNA polymerases may all have evolved from a common primordial gene. Based on the sequence analysis and genetic results from yeast and herpes simplex virus studies, these consensus sequences are suggested to define potential sites that subserve essential roles in the DNA polymerase reaction. Two of these conserved regions appear to participate directly in the active site required for substrate deoxynucleotide interaction. One region toward the carboxyl-terminus has the potential to be the DNA interacting domain, whereas a potential DNA primase interaction domain is predicted toward the amino-terminus. The provisional assignment of these domains can be used to identify unique or dissimilar features of functionally homologous catalytic sites in viral DNA polymerases of pathogenetic significance and thereby serve to guide more rational antiviral drug design.  相似文献   

16.
An aphidicolin-resistant mutant of vaccinia virus has been shown to encode an altered viral DNA polymerase that is more resistant to aphidicolin. Marker transfer experiments with the DNA from the resistant virus localized the mutation site to an RsaI segment within the portion of the HindIII-E segment which has been shown to contain the viral DNA polymerase gene. Nucleotide sequence analysis of the mutant DNA showed a single GC to AT transition at position 2430, which indicates a leucine-to-methionine change at residue 645 in the protein.  相似文献   

17.
An alternate method for synthesis of double-stranded DNA segments   总被引:8,自引:0,他引:8  
Recent progress in the chemical synthesis of DNA has now made it possible to rapidly synthesize single-stranded DNAs over 40 bases in length. We have taken advantage of these longer DNAs in assembling and cloning a 132-base pair gene segment coding for amino acids 126 through the stop codon of human leukocyte interferon alpha 2. The method used involves DNA polymerase I-mediated repair synthesis of synthetic oligonucleotide substrates having short stretches of complementary sequence at their 3' termini. In the presence of DNA polymerase I and the four deoxyribonucleoside triphosphates, those primer-templates are converted to full length double-stranded DNAs. The economy in chemical synthesis using this approach is substantial with a greater than 40% reduction in the amount of chemical synthesis required as compared with the conventional approach. We describe in detail this methodology for the biochemical assembly of long gene segments from synthetic oligodeoxyribonucleotides.  相似文献   

18.
Domain structure of vaccinia DNA ligase.   总被引:2,自引:0,他引:2       下载免费PDF全文
The 552 amino acid vaccinia virus DNA ligase consists of three structural domains defined by partial proteolysis: (i) an amino-terminal 175 amino acid segment that is susceptible to digestion with chymotrypsin and trypsin; (ii) a protease-resistant central domain that contains the active site of nucleotidyl transfer (Lys-231); (iii) a protease-resistant carboxyl domain. The two protease-resistant domains are separated by a protease-sensitive interdomain bridge from positions 296 to 307. Adenylyltransferase and DNA ligation activities are preserved when the N-terminal 200 amino acids are deleted. However, the truncated form of vaccinia ligase has a reduced catalytic rate in strand joining and a lower affinity for DNA than does the full-sized enzyme. The 350 amino acid catalytic core of the vaccinia ligase is similar in size and protease-sensitivity to the full-length bacteriophage T7 DNA ligase.  相似文献   

19.
The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1.   总被引:2,自引:0,他引:2  
V Scarlato  S Gargano 《Gene》1992,118(1):109-113
The bacteriophage SPO1 DNA polymerase-encoding gene, which contains a self-splicing intron, has been sequenced and its amino acid (aa) sequence has been deduced. The aa sequence of SPO1 DNA polymerase shows a high degree of similarity with that of DNA polymerase I from Escherichia coli (Po1I). Alignment with the sequences of Po1I, and the phi 29 and SPO1 DNA polymerases indicate that the aa residues that have been implicated in 3'----5' exonuclease activities are conserved.  相似文献   

20.
Lin W  Wu X  Wang Z 《Mutation research》1999,433(2):89-98
DNA damage can cause mutations which in turn may lead to carcinogenesis. In the yeast Saccharomyces cerevisiae, DNA damage-induced mutagenesis pathway requires the REV3 gene. It encodes the catalytic subunit of DNA polymerase zeta that specifically functions in translesion DNA synthesis. We have cloned a cDNA of the human homologue of REV3 (hREV3), which consists of 10,716 bp and codes for a protein of 3130 amino acid residues (352,737 Da). Its C-terminal 755 amino acids show extensive homology with the yeast protein at the C-terminus: 43% identity and 74% similarity. This region contains the six highly conserved DNA polymerase motifs. Furthermore, we have identified four sequence motifs in the N-terminal region outside the polymerase domain that are conserved in DNA polymerase delta from various sources. Three of which are present in DNA polymerase zeta encoded by human, yeast, and plant REV3 genes, indicating that this protein is a member of the DNA polymerase delta family. DNA polymerases delta and zeta are structurally distinguished by the presence of a specific delta IV motif in the former and motifs zeta I and zeta II in the latter, respectively. Human DNA polymerase zeta is ubiquitously expressed in various tissues, consistent with the notion that the hREV3 pathway may be a fundamental mechanism of damage-induced mutagenesis in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号