首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the course of a heterologous transposon tagging experiment in Petunia hybrida (n=7), 135 independent T-DNA loci were tested for linkage to the target genes Hf1 and Fl, which are located on the two largest chromosomes. Approximately one-third (47) of these T-DNA loci were linked to one of these two markers. Of these 47 linkedloci, 19 mapped within 1 cM of its marker, indicating a highly non-random genetic distribution of introduced loci. However, rather than non-random integration within both of the marked chromosomes, this probably reflects a suppression of recombination around these marker loci in the particular wide hybrids used for mapping. This hypothesis was tested by measuring recombination between linked T-DNAs in an inbred background. Inbred recombination levels were found to be at least 3-fold higher around the Hf1 locus and 12-fold higher around Fl compared to the wide hybrids. These findings may reflect the origin of P. hybrida by hybridization of wild species, and while relevant to genetic mapping in petunia in particular they may also have more general significance for any mapping strategies involving the use of wide hybrids in other species.  相似文献   

2.
T-DNA integration in the nuclear plant genome may lead to rearrangements of the plant target site. Here we present evidence for a chromosomal inversion of 26 cM bordered by two T-DNAs in direct orientation, which is linked to the mgoun2 mutation. The integration sites of the T-DNAs map at positions 80 and 106 of chromosome I and we show that each T-DNA is bordered by plant sequences from positions 80 and 106, respectively. Although the T-DNAs are physically distant, they are genetically closely linked. In addition, three markers located on the chromosome segment between the two T-DNA integration sites show no recombination with the mgo2 mutation. We show that the inversion cannot be a consequence of a recombination event between the two T-DNAs, but that the integration of the T-DNAs and the inversion were two temporally linked events. T-DNA integration mechanisms that could have led to this inversion are discussed.  相似文献   

3.
H Wabiko  M Kagaya  H Sano 《Plasmid》1991,25(1):3-15
The structure of several T-DNAs of Agrobacterium tumefaciens was determined by molecular cloning and Southern hybridization. The T-DNAs cloned in Escherichia coli vectors from four different nopaline type strains (PyTE1, PO31, PO22, and AKE10) showed various sizes of restriction enzyme fragments. Comparative analysis of the restriction maps revealed that the T-DNAs were composed of three distinct structural domains: (1) the region proximal to the right border (Domain I) containing the portion essential for tumorigenicity, (2) the proximity to the left border (Domain II), and (3) the region between the two domains (Domain III) to both of which no functional assignments have yet been made. The restriction map indicated that the Domains I and II were conserved in the most clones, including the well-characterized T37 T-DNA. The only exception was AKK1 (obtained from AKE10) which differed in Domain I. In the Domain III, insertions of 1.5- or 1.6-kb DNA were found in four clones, whereas an additional 2.5-kb insertion was found in one clone (PO22P1). The individual T-DNAs including Domain III with insertions was demonstrated in petunia and poplar tumors induced by the referred A. tumefaciens strains. However, resulting tumors differed in morphology and growth. These results suggest that the length polymorphism of the nopaline type T-DNA can be accounted by DNA insertions, and that diverse T-DNAs reflect their different roles in tumorigenicity.  相似文献   

4.
T-DNA recombination and replication was analyzed in 'black mexican sweet' (BMS) cells transformed with T-DNAs containing the replication system from wheat dwarf virus (WDV). Upon recombination between the T-DNA ends, a promoterless marker gene (gusA) was activated. Activation of the recombination marker gene was delayed and increased exponentially over time, suggesting that recombination and amplification of the T-DNA occurred in maize cells. Mutant versions of the viral initiator gene (rep), known to be defective in the replication function, failed to generate recoverable recombinant T-DNA molecules. Circularization of T-DNA by the FLP/FRT site-specific recombination system and/or homologous recombination was not necessary to recover circular T-DNAs. However, replicating T-DNAs appeared to be suitable substrates for site-specific and homologous recombination. Among 33 T-DNA border junctions sequenced, only one pair of identical junction sites was found implying that the population of circular T-DNAs was highly heterogenous. Since no circular T-DNA molecules were detected in treatments without rep, it suggested that T-DNA recombination was linked to replication and might have been stimulated by this process. The border junctions observed in recombinant T-DNA molecules were indicative of illegitimate recombination and were similar to left-border recombination of T-DNA into the genome after Agro-mediated plant transformation. However, recombination between T-DNA molecules differed from T-DNA/genomic DNA junction sites in that few intact right borders were observed. The replicating T-DNA molecules did not enhance genomic random integration of T-DNA in the experimental configuration used for this study.  相似文献   

5.
Nicotiana protoplasts and Arabidopsis leaf discs or roots were co-cultivated with two Agrobacterium strains each carrying a different T-DNA. Co-transformed plants were selected and the integration of the different T-DNAs was analysed at the genetic and genomic level. Genetic analysis showed that the T-DNAs derived from different bacteria were frequently integrated at the same locus, independent of the plant species or transformation method used. Southern analysis revealed that 12 out of 27 Arabidopsis transformants contained the co-transferred T-DNAs linked to each other in all possible configurations but with a preference for those with at least one right border involved in linkage. Overall, our data support the hypothesis that ligation of separate T-DNAs is a dominant mechanism in formation of the frequently observed repeats of identical T-DNAs. We propose a scheme which could explain the formation of T-DNA repeats and the preferential involvement of right borders in T-DNA linkages.  相似文献   

6.
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.  相似文献   

7.
We determined whether T-DNA molecules introduced into plant cells using Agrobacterium are suitable substrates for homologous recombination. For the detection of such recombination events different mutant versions of a NPTII construct were used. In a first set of experiments protoplasts of Nicotiana tabacum SR1 were cocultivated with two Agrobacterium tumefaciens strains. Each strain contained a different T-DNA, one carrying a 5' deleted NPTII gene and the other a NPTII gene with a 3' deletion. A restored NPTII gene was found in 1-4% of the protoplasts that had been cotransformed with both T-DNAs. Restoration of the NPTII gene could only be the consequence of homologous recombination between the two different T-DNAs in the plant cell, since the possibility of recombination in Agrobacterium was excluded in control experiments. In subsequent experiments was investigated the potential use of Agrobacterium for gene targeting in plants. A transgenic tobacco line with a T-DNA insertion carrying a defective NPTII gene with a 3' deletion was transformed via Agrobacterium with a T-DNA containing a defective NPTII repair gene. Several kanamycin resistant plant lines were obtained with an intact NPTII gene integrated in their genome. In one of these lines the defective NPTII gene at the target locus had been properly restored. Our results show that in plants recombination can occur between a chromosomal locus and a homologous T-DNA introduced via A. tumefaciens. This opens the possibility of using the Agrobacterium transformation system for site directed mutagenesis of the plant genome.  相似文献   

8.
Summary The formation of crown gall tumours involves the transfer of the T-DNA region of the Ti plasmid from Agrobacterium to plant cells and its subsequent integration into plant chromosomes. When agrobacteria are incubated with plant protoplasts or exudates of plants, the T-DNA region is circularized by recombination or cleavage and rejoining between the 25 bp terminal repeats; the formation of circular T-DNAs is thought to be one step in T-DNA transfer (Koukolikova-Nicola et al. 1985; Machida et al. 1986). We previously showed that the virulence region of the Ti plasmid is required for T-DNA circularization. In the present paper, we examined the circularization event in agrobacteria harbouring octopine Ti plasmids with mutations in various loci of the virulence region. The results clearly demonstrate that the gene(s) encoded in the virD locus are necessary for T-DNA circularization. In particular, the gene(s) present in the region proximal to the virD promoter are essential. We propose that roduct(s) of this gene have recombinase or endonuclease activity which specifically recognizes the 25 bp terminal repeats of T-DNA.  相似文献   

9.
The Lr20-Sr15-Pm1 resistance locus in hexaploid wheat confers resistance to three different fungal wheat pathogens (leaf rust, stem rust, and powdery mildew). It was previously localized in the distal region of chromosome arm 7AL. As a first step towards the isolation of this complex locus, we performed molecular mapping of the Lr20 and Pm1 genes in three F2 populations. In two populations, a cluster of 8 and 12 markers, respectively, cosegregated with the resistance genes. In a third population based on a cross between a susceptible lr20 mutant and a resistant cultivar, all clustered markers were monomorphic. However, in this population the recombination frequency proximal to the Lr20 gene was up to 60 times higher, indicating that the complete genetic linkage of the clustered markers is not due to a close physical linkage of the probes but is caused by suppressed recombination. This was supported by the analysis of Triticum monococcum BAC clones where no physical linkage between cosegregating probes was observed. Suppressed recombination at the Lr20-Pm1 locus is likely the result of an alien introgression of chromatin from an unidentified wild relative species or is due to chromosomal rearrangements.  相似文献   

10.
Harbord RM  Napoli CA  Robbins TP 《Genetics》2000,154(3):1323-1333
In plants with a gametophytic self-incompatibility system the specificity of the pollen is determined by the haploid genotype at the self-incompatibility (S) locus. In certain crosses this can lead to the exclusion of half the gametes from the male parent carrying a particular S-allele. This leads to pronounced segregation distortion for any genetic markers that are linked to the S-locus. We have used this approach to identify T-DNA insertions carrying a maize transposable element that are linked to the S-locus of Petunia hybrida. A total of 83 T-DNA insertions were tested for segregation distortion of the selectable marker used during transformation with Agrobacterium. Segregation distortion was observed for 12 T-DNA insertions and at least 8 of these were shown to be in the same linkage group by intercrossing. This indicates that differential transmission of a single locus (S) is probably responsible for all of these examples of T-DNA segregation distortion. The identification of selectable markers in coupling with a functional S-allele will allow the preselection of recombination events around the S-locus in petunia. Our approach provides a general method for identifying transgenes that are linked to gametophytic self-incompatibility loci and provides an opportunity for transposon tagging of the petunia S-locus.  相似文献   

11.
Transgenic locus composition and T-DNA linkage configuration were assessed in a population of rice plants transformed using the dual-binary vector system pGreen (T-DNA containing the bar and gus genes)/pSoup (T-DNA containing the aphIV and gfp genes). Transgene structure, expression and inheritance were analysed in 62 independently transformed plant lines and in around 4,000 progeny plants. The plant lines exhibited a wide variety of transgenic locus number and composition. The most frequent form of integration was where both T-DNAs integrated at the same locus (56% of loci). When single-type T-DNA integration occurred (44% of loci), pGreen T-DNA was preferentially integrated. In around half of the plant lines (52%), the T-DNAs integrated at two independent loci or more. In these plants, both mixed and single-type T-DNA integration often occurred concurrently at different loci during the transformation process. Non-intact T-DNAs were present in 70–78% of the plant lines causing 14–21% of the loci to contain only the mid to right border part of a T-DNA. In 53–66% of the loci, T-DNA integrated with vector backbone sequences. Comparison of transgene presence and expression in progeny plants showed that segregation of the transgene phenotype was not a reliable indicator of either transgene inheritance or T-DNA linkage, as only 60–80% of the transgenic loci were detected by the expression study. Co-expression (28% of lines) and backbone transfer (53–66% of loci) were generally a greater limitation to the production of marker-free T1 plants expressing the gene of interest than co-transformation (71% of lines) and unlinked integration (44% of loci).  相似文献   

12.
After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences adjacent to the T-DNA borders. Nine direct or inverted T-DNA border junctions were analyzed at the sequence level. Precise end-to-end fusions were found between two right border ends, whereas imprecise fusions and filler DNA were present in T-DNA linkages containing a left border end. The results suggest that end-to-end ligation of double-stranded T-DNAs occurs especially between right T-DNA ends and that illegitimate recombination on the basis of microhomology, deletions, repair activities and insertions of filler DNA is involved in the formation of left border T-DNA junctions. Therefore, a similar illegitimate recombination mechanism is proposed that is involved in the formation of complex T-DNA inserts as well as in the integration of the T-DNA in the plant genome.  相似文献   

13.
The Dissociation transposable element (Ds) of maize containing NPTII was introduced into the diploid potato (Solanum tuberosum) clone J91-6400-A16 through Agrobacterium tumefaciens mediated transformation. Genomic DNA sequences flanking the T-DNAs from 312 transformants were obtained with inverse polymerase chain reaction or plasmid rescue techniques and used as probes for RFLP linkage analysis. The RFLP map location of 60 T-DNAs carrying Ds-NPTII was determined. The T-DNA distribution per chromosome and the relative distance between them appeared to be random. All 12 chromosomes have been covered with Ds-containing T-DNAs, potentially enabling tagging of any gene in the potato genome. The T-DNA insertions of two transformants, BET92-Ds-A16-259 and BET92-Ds-A16-416, were linked in repulsion to the position of the resistance gene R1 against Phytophthora infestans. After crossing BET92-Ds-A16-416 with a susceptible parent, 4 desired recombinants (Ds carrying T-DNA linked in coupling phase with the R1 gene) were discovered. These will be used for tagging the R1 gene. The efficiency of the pathway from the introduction to localization of T-DNAs is discussed. Key words : Solanum tuberosum, Phytophthora infestans, Ds element, transposon tagging, R genes, euchromatin.  相似文献   

14.
R W Elliott  B K Lee  E M Eicher 《Genomics》1990,8(3):591-594
A DNA fragment size variant for the growth hormone gene, Gh, has been identified among inbred strains of mice. The inbred strains SM/J and CAST/Ei carry the less frequent allele Ghb and 11 other strains carry the Gha allele. Segregation analysis of data from two crosses involving SM/J and NZB/BINJ and a cross involving BALB/cJ and CAST/Ei confirmed the assignment of Gh to mouse chromosome 11 and placed the locus 2.6 +/- 1.8 map units distal to Erba (avian erythroblastosis oncogene A), a position consistent with the assignment of the Gh locus to the q22-q24 region of chromosome 17 on the human map. Segregation analysis also refined the location of Sparc (secreted acidic cysteine-rich glycoprotein) on mouse chromosome 11 to a position 16.7 +/- 4.2 map units proximal to Evi-2 (ecotropic viral integration site 2).  相似文献   

15.
Molecular cytogenetic maps of sorghum linkage groups 2 and 8   总被引:5,自引:0,他引:5       下载免费PDF全文
Kim JS  Klein PE  Klein RR  Price HJ  Mullet JE  Stelly DM 《Genetics》2005,169(2):955-965
To integrate genetic, physical, and cytological perspectives of the Sorghum bicolor genome, we selected 40 landed bacterial artificial chromosome (BAC) clones that contain different linkage map markers, 21 from linkage group 2 (LG-02) and 19 from linkage group 8 (LG-08). Multi-BAC probe cocktails were constructed for each chromosome from the landed BACs, which were also preevaluated for FISH signal quality, relative position, and collective chromosome coverage. Comparison to the corresponding linkage map revealed full concordance of locus order between cytological and prior segregation analyses. The pericentromeric heterochromatin constituted a large quasi-uniform block in each bivalent and was especially large in the bivalent corresponding to LG-08. Centromere positions in LG-02 and LG-08 were progressively delimited using FISH to identify landed BACs for which the FISH signals visibly flanked the centromere. Alignment of linkage and cytological maps revealed that pericentromeric heterochromatin of these sorghum chromosomes is largely devoid of recombination, which is mostly relegated to the more distal regions, which are largely euchromatic. This suggests that the sorghum genome is thus even more amenable to physical mapping of genes and positional cloning than the C-value alone might suggest. As a prelude to positional cloning of the fertility restorer, Rf1, FISH of BAC clones flanking the Rf1 locus was used to delimit the chromosomal position of the gene. FISH of BACs that contain the most proximal linkage markers enabled localization of Rf1 to a approximately 0.4-Mbp euchromatic region of LG-08. Cytogenetic analyses of Rf1 and other trait loci will aid in assessing the feasibility of positional cloning and help formulate strategies required for cloning this and other agriculturally critical genes.  相似文献   

16.
We are developing a system for isolating tomato genes by transposon mutagenesis. In maize and tobacco, the transposon Activator (Ac) transposes preferentially to genetically linked sites. To identify transposons linked to various target genes, we have determined the RFLP map locations of Ac- and Dissociation (Ds)-carrying T-DNAs in a number of transformants. T-DNA flanking sequences were isolated using the inverse polymerase chain reaction (IPCR) and located on the RFLP map of tomato. The authenticity of IPCR reaction products was tested by several criteria including nested primer amplification, DNA sequence analysis and PCR amplification of the corresponding insertion target sequences. We report the RFLP map locations of 37 transposon-carrying T-DNAs. We also report the map locations of nine transposed Ds elements. T-DNAs were identified on all chromosomes except chromosome 6. Our data revealed no apparent chromosomal preference for T-DNA integration events. Lines carrying transposons at known map locations have been established which should prove a useful resource for isolating tomato genes by transposon mutagenesis.  相似文献   

17.
J Dvorák  M C Luo  Z L Yang 《Genetics》1998,148(1):423-434
RFLP was investigated at 52 single-copy gene loci among six species of Aegilops, including both cross-fertilizing and self-fertilizing species. Average gene diversity (H) was found to correlate with the level of outcrossing. No relationship was found between H and the phylogenetic status of a species. In all six species, the level of RFLP at a locus was a function of the position of the locus on the chromosome and the recombination rate in the neighborhood of the locus. Loci in the proximal chromosome regions, which show greatly reduced recombination rates relative to the distal regions, were significantly less variable than loci in the distal chromosome regions in all six species. Variation in recombination rates was also reflected in the haplotype divergence between closely related species; loci in the chromosome regions with low recombination rates were found to be diverged less than those in the chromosome regions with high recombination rates. This relationship was not found among the more distantly related species.  相似文献   

18.
To develop a model system for studies of homologous recombination in plants, transgenic Nicotiana tabacum and Nicotiana plumbaginifolia lines were generated harbouring a single target T-DNA containing the negative selective codA gene encoding cytosine deaminase (CD) and the β-glucuronidase (GUS) gene. Subsequently, the target lines were transformed with a replacement-type T-DNA vector in which the CD gene and the GUS promoter had been replaced with a kanamycin-resistance gene. For both Nicotiana species kanamycin-resistant lines were selected which had lost the CD gene and the GUS activity. One tobacco line was the result of a precise gene targeting event. However, most other lines were selected due to a chromosomal deletion of the target locus. The deletion frequency of the target locus varied between target lines, and could be present in up to 20% of the calli which were grown from leaf protoplasts. T-DNA transfer was not required for induction of the deletions, indicating that the target loci were unstable. A few lines were obtained in which the target locus had been deleted partially. Sequence analysis of the junctions revealed deletion of DNA sequences between microhomologies. We conclude that T-DNAs, which are stable during plant development as well as in transmission to the offspring, may become unstable during propagation in callus tissue. The relationships between callus culture, genetic instability and the process of T-DNA integration and deletion in the plant genome are discussed.  相似文献   

19.
During crown gall tumorigenesis, part of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid, the T-DNA, integrates into plant DNA. Direct repeats define the left and right ends of the T-DNA, but tumorigenesis requires only the right-hand repeat. Virulence (vir) genes act in trans to mobilize the T-DNA into plant cells. Transfer of T-DNA begins when the VirD endonuclease cleaves within the right-hand border repeat. Although the T-DNA right-border repeat promotes T-DNA transmission best in its normal orientation, an inverted right border exhibits reduced but significant activity. Two models may account for this diminished tumorigenesis. The right border may function bidirectionally, with strong activity only in its wild-type orientation, or it may promote T-DNA transfer in a unidirectional manner such that, with an inverted right border, transfer proceeds around the entire Ti plasmid before reaching the T-DNA. To determine whether a substantial portion of the Ti plasmid is transferred to plant cells, as predicted by the unidirectional-transfer hypothesis, we examined T-DNAs in tumors induced by strains containing a Ti plasmid with a right border inverted with respect to the T-DNA oncogenes. These tumors contained extremely long T-DNAs corresponding to most or all of the Ti plasmid. To test whether the right border can function bidirectionally, we inserted T-DNAs with either a properly oriented or an inverted right border into a specific site in the A. tumefaciens chromosome. A border situated to transfer the oncogenes first directed T-DNA transfer even from the bacterial chromosome, whereas a border in the opposite (inverted) orientation did not transfer the oncogenes to plant cells. Our results indicate that the right-border repeat functions in a unidirectional manner.  相似文献   

20.
The sensitivity of fluorescence in situ hybridization (FISH) for mapping plant chromosomes of single-copy DNA sequences is limited. We have adapted for plant cytogenetics a new signal-amplification method termed tyramide-FISH (Tyr-FISH). Until present this technique has only been applied to human chromosomes. The method is based on enzymatic deposition of fluorochrome-conjugated tyramide. With Tyr-FISH it was possible to detect target T-DNA sequences on plant metaphase chromosomes as small as 710 bp without using a cooled CCD camera. Short detection time and high sensitivity, in combination with a low background, make the Tyr-FISH method very suitable for routine application in plant cytogenetic research. With Tyr-FISH we analysed the position of T-DNA inserts in transgenic shallots. We found that the inserts were preferentially located in the distal region of metaphase chromosomes. Sequential fluorescence in situ hybridization with a 375 bp satellite sequence suggested that a specific T-DNA insert was located within the satellite sequence hybridization region on a metaphase chromosome. Analysis of less-condensed prophase and interphase chromosomes revealed that the T-DNA was integrated outside the satellite DNA-hybridization region in a more proximal euchromatin region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号