首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The carbon skeleton of glucose is extensively randomized during conversion to cell wall glucosamine by Escherichia coli K-12. Exogenous glucosamine-1-(14)C is selectively oxidized, and isotope incorporation into cellular glucosamine is greatly diluted during assimilation. A mutant unable to grow with N-acetylglucosamine as a carbon and energy source was isolated from E. coli K-12. This mutant was found to be defective in glucosamine-6-phosphate deaminase. Glucosamine-1-(14)C and N-acetylglucosamine-1-(14)C were assimilated during the growth of mutant cultures without degradation or carbon randomization. Assimilated isotopic carbon resided entirely in cell wall glucosamine and muramic acid. Some isotope dilution occurred from biosynthesis, but at high concentrations (0.2 mm) of added N-acetylglucosamine nearly all cellular amino sugar was derived from the exogenous source. Growth of the mutant was inhibited with 1 mmN-acetylglucosamine.  相似文献   

13.
14.
Regulation of sugar accumulation by Escherichia coli   总被引:4,自引:0,他引:4  
  相似文献   

15.
B G?rke  B Rak 《The EMBO journal》1999,18(12):3370-3379
In bacteria various sugars are taken up and concomitantly phosphorylated by sugar-specific enzymes II (EII) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The phosphoryl groups are donated by the phosphocarrier protein HPr. BglG, the positively acting regulatory protein of the Escherichia coli bgl (beta-glucoside utilization) operon, is known to be negatively regulated by reversible phosphorylation catalyzed by the membrane spanning beta-glucoside-specific EIIBgl. Here we present evidence that in addition BglG must be phosphorylated by HPr at a distinct site to gain activity. Our data suggest that this second, shortcut route of phosphorylation is used to monitor the state of the various PTS sugar availabilities in order to hierarchically tune expression of the bgl operon in a physiologically meaningful way. Thus, the PTS may represent a highly integrated signal transduction network in carbon catabolite control.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号