首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.  相似文献   

2.
Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin   总被引:2,自引:0,他引:2  
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of (125)I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (K(d) approximately 3.5 micrometer) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI-1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1.vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization.  相似文献   

3.
Incorporation of thrombospondin into fibrin clots   总被引:9,自引:0,他引:9  
Thrombospondin is a major platelet glycoprotein which is released from platelets during blood coagulation. We examined the interaction of thrombospondin with polymerizing fibrin. Thrombospondin, purified from human platelets and labeled with 125I, became incorporated into clots formed from both plasma and purified fibrinogen. Plasma clots contained somewhat less thrombospondin than clots formed from equivalent concentrations of fibrinogen. In plasma clots and fibrin clots formed in the presence of factor XIII, thrombospondin was cross-linked in the clot; thrombospondin in the supernatant remained largely monomeric. Cross-linking of thrombospondin by factor XIII, however, only slightly increased the amount of thrombospondin which was incorporated into the clot. In contrast, incorporation of 125I-fibronectin into clots was dependent upon cross-linking. Most of the incorporation of 125I-thrombospondin occurred during fibrin polymerization as judged by parallel studies of the incorporation of 125I-fibrinogen. The amount of thrombospondin incorporated into a clot was directly related to thrombospondin concentration and was only weakly dependent on fibrinogen concentration. Incorporation was not saturated at thrombospondin:fibrin (mol/mol) ratios as high as 2/1. Thrombospondin, however, modified the final structure of fibrin clots in a concentration-dependent manner as monitored by opacity. When tryptic digests of 125I-thrombospondin were studied, the 270-kilodalton core became incorporated into fibrin whereas the 30-kilodalton heparin binding fragment was excluded. These results indicate that thrombospondin specifically co-polymerizes with fibrin during blood coagulation and may be an important modulator of clot structure.  相似文献   

4.
Plasma factor XIII is the zymogen of the transglutaminase factor XIIIa. This enzyme catalyzes the formation of isopeptide cross-links between fibrin molecules in nascent blood clots that greatly increase the mechanical stability of clots and their resistance to thrombolytic enzymes. We have characterized the solution interactions of factor XIII with two variants of fibrinogen, the soluble precursor of fibrin. Both the predominant fibrinogen gamma(A)/gamma(A) and the major variant gamma(A)/gamma' form complexes with a 2 fibrinogen:1 factor XIII ratio. The absence of detectable concentrations of 1:1 complexes in equilibrium mixtures containing free factor XIII and 2:1 complexes suggests that this interaction is cooperative. Factor XIII binds fibrinogen gamma(A)/gamma' approximately 20-fold more tightly than fibrinogen gamma(A)/gamma(A), and the interaction with fibrinogen gamma(A)/gamma' (but not fibrinogen gamma(A)/gamma(A)) is accompanied by a significant release of Ca(2+). Taken together, these results suggest that the strikingly anionic gamma' C-terminal sequence contains features that are important for factor XIII binding. Consistent with this notion, a synthetic 20-residue polypeptide containing the gamma' sequence was found to associate with factor XIII in a 2:1 molar ratio and act as an efficient competitor for fibrinogen gamma(A)/gamma' binding.  相似文献   

5.
Vitronectin is present in large concentrations in serum and participates in regulation of humoral responses, including coagulation, fibrinolysis, and complement activation. Because alterations in coagulation and fibrinolysis are common in acute lung injury, we examined the role of vitronectin in LPS-induced pulmonary inflammation. Vitronectin concentrations were significantly increased in the lungs after LPS administration. Neutrophil numbers and proinflammatory cytokine levels, including IL-1beta, MIP-2, KC, and IL-6, were significantly reduced in bronchoalveolar lavage fluid from vitronectin-deficient (vitronectin(-/-)) mice, as compared with vitronectin(+/+) mice, after LPS exposure. Similarly, LPS induced increases in lung edema, myeloperoxidase-concentrations, and pulmonary proinflammatory cytokine concentrations were significantly lower in vitronectin(-/-) mice. Vitronectin(-/-) neutrophils demonstrated decreased KC-induced chemotaxis as compared with neutrophils from vitronectin(+/+) mice, and incubation of vitronectin(+/+) neutrophils with vitronectin was associated with increased chemotaxis. Vitronectin(-/-) neutrophils consistently produced more TNF-alpha, MIP-2, and IL-1beta after LPS exposure than did vitronectin(+/+) neutrophils and also showed greater degradation of IkappaB-alpha and increased LPS-induced nuclear accumulation of NF-kappaB compared with vitronectin(+/+) neutrophils. These findings provide a novel vitronectin-dependent mechanism contributing to the development of acute lung injury.  相似文献   

6.
The contribution of leukocyte proteases to fibrinolysis   总被引:3,自引:0,他引:3  
E F Plow 《Blut》1986,53(1):1-9
Polymorphonuclear leukocytes accumulate within blood clots and may contribute to fibrinolysis. The primary fibrinolytic enzymes of neutrophils are cathepsin G and elastase. Fibrin can be exposed to these granular enzymes as a result of cell lysis, phagocytosis of fibrin, or secretion of the enzymes from the cells. Neutrophil secretion occurs in association with blood coagulation and is dependent upon a plasma factor(s) and calcium. After secretion, the enzymes can degrade fibrin within a plasma environment. This is demonstrated by the inhibition of fibrinolysis by specific inhibitors of elastase and the augmentation of fibrinolysis by neutralization of the primary plasma inhibitor of elastase, alpha 1-proteinase inhibitor. A radioimmunoassay which discriminates elastase from plasmic degradation products of fibrinogen has been developed. In this assay, elastase elicited degradation products of fibrin(ogen) were detected in certain pathophysiologic plasma samples. Taken together, these findings indicate a role for leukocyte proteases in physiological fibrinolysis.  相似文献   

7.
Transformation of fibrinogen into fibrin with consequent formation of the fibrin clot trimeric structure is one of the final steps in the blood coagulation system. The plasminogen activation by the tissue plasminogen activator (t-PA) is one of the fibrinolysis system key reactions. The effect of different factors on transformation of plasminogen into plasmin is capable to change essentially the equilibrium between coagulation and fibrinolytic sections of haemostasis system. We have studied the plasminogen activation by tissue plasminogen activator on fibrin clots surface formed on the interface between two phases and in presence of one phase. The t-PA plasminogen activation rate on fibrin clots both with film and without it the latter has been analyzed. These data allow to assume that the changes of fibrin clot structure depend on its formations, as well as are capable to influence essentially on plasminogen activation process by means of its tissue activating agent.  相似文献   

8.
Fibrin clot structure is highly dependent on factor XIII activity. Activated FXIII catalyzes the formation of the peptide bonds between the gamma and alpha chains in noncovalently bound fibrin polymers and incorporates various adhesive and antifibrinolytic proteins into the final fibrin clot. In the absence of activated FXIII, clots are unstable and susceptible to fibrinolysis. Several studies have examined the effects of FXIII polymorphisms on final fibrin clot structure and clinical thrombotic risk. The Val34Leu FXIII polymorphism is associated with increased activation by thrombin. In the presence of saturating thrombin concentrations, however, FXIIIa specific enzyme activity is not affected by genetic polymorphisms. Fibrin clots formed in the presence of the FXIII 34Leu polymorphisms do tend to be thinner and less porous, however. The effects of prothrombin concentrations on clot structure have suggested that thinner clots are more resistant to fibrinolysis and associated with increased thrombotic risk. Most clinical studies of 34Leu FXIII carriers, however, have demonstrated a lower incidence of both venous and arterial thrombosis in carriers of the mutant allele compared to Val/Val carriers. One recent study has suggested that the interactions between FXIII phenotype and plasma fibrinogen concentrations significantly influence clinical thrombotic risk.  相似文献   

9.
Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance.  相似文献   

10.
Factor VII Activating Protease (FSAP) is a plasma protease affecting both coagulation and fibrinolysis. Although a role in hemostasis is still unclear, the identification of additional physiologic substrates will help to elucidate its role in this context. FSAP has been reported to cleave fibrinogen, but the functional consequences of this are not known. We have therefore undertaken this study to determine the implications of this cleavage for fibrin-clot formation and its lysis. Treatment of human fibrinogen with FSAP released an N-terminal peptide from the Bβ chain (Bβ1-53) and subsequently the fibrinopeptide B; within the Aα chain a partial truncation of the αC-region by multiple cleavages was seen. The truncated fibrinogen showed a delayed thrombin-catalyzed polymerization and formed fibrin clots of reduced turbidity, indicative of thinner fibrin fibers. Confocal laser scanning and scanning electron microscopy of these clots revealed a less coarse fibrin network with thinner fibers and a smaller pore size. A lower pore size was also seen in permeability studies. Unexpectedly, FSAP-treated fibrinogen or plasma exhibited a significantly faster tPA-driven lysis, which correlated exclusively with cleavage of fibrinogen and not with activation of plasminogen activators. Similar observations were also made in plasma after activation of endogenous zymogen FSAP, but not in plasma of carrier of the rare Marburg I single nucleotide polymorphism. In conclusion, altering fibrin clot properties by fibrinogenolysis is a novel function of FSAP in the vasculature, which facilitates clot lysis and may in vivo contribute to reduced fibrin deposition during thrombosis.  相似文献   

11.
Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.  相似文献   

12.
Vitronectin immobilized onto polystyrene microtiter wells was demonstrated to specifically bind plasminogen in a concentration-dependent manner, yielding an estimated KD = 0.4 microM. Heparin only moderately interfered with the vitronectin-plasminogen interaction, whereas high concentrations of 6-amino-hexanoic acid inhibited binding. Utilizing a ligand-blotting procedure in which plasminogen was reacted with proteolytic fragments of vitronectin, transblotted onto nitrocellulose, the plasminogen-binding site of vitronectin was localized to the heparin-binding domain of the adhesive protein. Moreover, vitronectin was found to inhibit in a dose-dependent fashion the fibrin(ogen)-induced activation of plasminogen by tissue plasminogen activator. These results provide the first evidence for a novel vitronectin-mediated control of plasminogen activation potentially relevant for directional clot-lysis and plasmin-dependent proteolysis in extracellular matrices.  相似文献   

13.
Glycolaldehyde (GA) is a highly reactive aldehyde that can be generated during inflammation and hyperglycemia. It can react with arginine and lysine residues impairing protein function. As inflammation and diabetes present haemostatic dysfunction, we hypothesized that GA could participate in this process. The aim of this study was to investigate if plasma incubated in the presence of GA presents alteration in the coagulation process. We also aimed to evaluate the role of fibrinogen in GA-induced haemostatic dysfunction. For this purpose, plasma and fibrinogen were each incubated separately, either in the presence or absence of 1 mM GA for 8 and 4 h, respectively. After that, plasma coagulation and fibrin polymerization kinetics were recorded, as well as the kinetic of plasma clot digestion and fibrinolysis protein carbonylation was quantified. An SDS-PAGE was run to check the presence of cross-linking between fibrinogen chains. GA induced a delay in plasma coagulation and in fibrin polymerization. Maximum absorbance decreased after GA treatment, indicating the generation of thinner fibers. Fibrin generated after complete coagulation showed resistance to enzymatic digestion, which could be related to the generation of thinner fibers. Protein carbonylation also increased after GA treatment. All parameters could be reversed with AMG (a carbonyl trap) co-treatment. The data presented herein indicate that GA causes post-translational modification of lysine and arginine residues, which are central to many events involving fibrinogen to fibrin conversion, as well as to fibrinolysis. These modifications lead to the generation of persistent clots and may contribute to mortality seen in pathologies such diabetes and sepsis.  相似文献   

14.
K T Preissner 《Blut》1989,59(5):419-431
Vitronectin (= complement S-protein) belongs to the group of structurally and functionally homologous adhesive proteins (fibrinogen, fibronectin, von Willebrand factor) which are essential in the procoagulant phase of the hemostatic system, interacting with platelets and the vessel wall. In addition to a structural motif in vitronectin responsible for this interaction (cell attachment domain) other functional domains in the protein molecule exist that contribute to its multifunctional role as regulator in the immune system (complement) as well as in fibrinolysis. These various activities and the ubiquitous distribution of vitronectin in the organism are discussed with regard to structure-function relationships of the protein molecule. Vitronectin may thus provide a conceptual molecular link between cell adhesion, humoral immune response and the hemostatic system, particularly at the blood-vessel wall interphase.  相似文献   

15.
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for the development of atherosclerotic disease which may be attributable to the ability of Lp(a) to attenuate fibrinolysis. A generally accepted mechanism for this effect involves direct competition of Lp(a) with plasminogen for fibrin(ogen) binding sites thus reducing the efficiency of plasminogen activation. Efforts to determine the domains of apolipoprotein(a) [apo(a)] which mediate fibrin(ogen) interactions have yielded conflicting results. Thus, the purpose of the present study was to determine the ability of single KIV domains of apo(a) to bind plasmin-treated fibrinogen surfaces as well to determine their effect on fibrinolysis using an in vitro clot lysis assay. A bacterial expression system was utilized to express and purify apo(a) KIV (2), KIV (7), KIV (9) DeltaCys (which lacks the seventh unpaired cysteine) and KIV (10) which contains a strong lysine binding site. We also expressed and examined three mutant derivatives of KIV (10) to determine the effect of changing critical residues in the lysine binding site of this kringle on both fibrin(ogen) binding and fibrin clot lysis. Our results demonstrate that the strong lysine binding site in apo(a) KIV (10) is capable of mediating interactions with plasmin-modified fibrinogen in a lysine-dependent manner, and that this kringle can increase in vitro fibrin clot lysis time by approximately 43% at a concentration of 10 microM KIV (10). The ability of the KIV (10) mutant derivatives to bind plasmin-modified fibrinogen correlated with their lysine binding capacity. Mutation of Trp (70) to Arg abolished binding to both lysine-Sepharose and plasmin-modified fibrinogen, while the Trp (70) -->Phe and Arg (35) -->Lys substitutions each resulted in decreased binding to these substrates. None of the KIV (10) mutant derivatives appeared to affect fibrinolysis. Apo(a) KIV (7) contains a lysine- and proline-sensitive site capable of mediating binding to plasmin-modified fibrinogen, albeit with a lower apparent affinity than apo(a) KIV (10). However, apo(a) KIV (7) had no effect on fibrinolysis in vitro. Apo(a) KIV (2) and KIV (9) DeltaCys did not bind measurably to plasmin-modified fibrinogen surfaces and did not affect fibrinolysis in vitro.  相似文献   

16.
In this study we report a kinetic model for the alpha-thrombin-catalyzed production of fibrin I and fibrin II at pH 7.4, 37 degrees C, gamma/2 0.17. The fibrin is produced by the action of human alpha-thrombin on plasma levels of human fibrinogen in the presence of the major inhibitor of alpha-thrombin in plasma, antithrombin III (AT). This model quantitatively accounts for the time dependence of alpha-thrombin-catalyzed release of fibrinopeptides A and B concurrent with the inactivation of alpha-thrombin by AT and delineates the concerted interactions of alpha-thrombin, fibrin(ogen), and AT during the production of a fibrin clot. The model also provides a method for estimating the concentration of alpha-thrombin required to produce a clot of known composition and predicts a direct relationship between the plasma concentration of fibrinogen and the amount of fibrin produced by a bolus of alpha-thrombin. The predicted relationship between the concentration of fibrinogen and the amount of fibrin produced in plasma provides a plausible explanation for the observed linkage between plasma concentrations of fibrinogen and the risk for ischemic heart disease.  相似文献   

17.

Background

Formation of compact and poorly lysable clots has been reported in thromboembolic disorders. Little is known about clot properties in bleeding disorders.

Objectives

We hypothesized that more permeable and lysis-sensitive fibrin clots can be detected in women with heavy menstrual bleeding (HMB).

Methods

We studied 52 women with HMB of unknown cause and 52 age-matched control women. Plasma clot permeability (Ks), turbidity and efficiency of fibrinolysis, together with coagulation factors, fibrinolysis proteins, and platelet aggregation were measured.

Results

Women with HMB formed looser plasma fibrin clots (+16% [95%CI 7–18%] Ks) that displayed lower maximum absorbancy (-7% [95%CI -9 – -1%] ΔAbsmax), and shorter clot lysis time (-17% [95%CI -23 – -11%] CLT). The HMB patients and controls did not differ with regard to coagulation factors, fibrinogen, von Willebrand antigen, thrombin generation markers and the proportion of subjects with defective platelet aggregation. The patients had lower platelet count (-12% [95%CI -19 – -2%]), tissue plasminogen activator antigen (-39% [95%CI -41 – -29%] tPA:Ag), and plasminogen activator inhibitor-1 antigen (-28% [95%CI -38 – -18%] PAI-1:Ag) compared with the controls. Multiple regression analysis upon adjustment for age, body mass index, glucose, and fibrinogen showed that decreased tPA:Ag and shortened CLT were the independent predictors of HMB.

Conclusions

Increased clot permeability and susceptibility to fibrinolysis are associated with HMB, suggesting that altered plasma fibrin clot properties might contribute to bleeding disorders of unknown origin.  相似文献   

18.
Fibrinogen, the major structural precursor of blood clots, was deglycosylated by peptide-N-(N-acetyl-beta-glucosaminyl)asparagine amidase without denaturation of the polypeptide chains. Deglycosylated fibrinogen behaved normally in clinical coagulation assays, although it is less soluble than normal fibrinogen. However, the turbidity of clots formed from deglycosylated fibrinogen always rose faster and higher than that of clots from normal fibrinogen. Scanning and transmission electron microscopy demonstrated that fibrin made from clots of deglycosylated fibrinogen consisted of thicker, less-branched fiber bundles in a more porous network. Moreover, the degree of lateral aggregation was directly related to clot turbidity and inversely related to branching. Deglycosylation promoted turbidity development, lateral aggregation, and porosity of clots under all conditions tested. All other steps in the coagulation pathways appeared to be unaffected by the absence of carbohydrate. These results suggest that carbohydrate constitutively affects the behavior of deglycosylated fibrinogens by 1) contributing a repulsive force that promotes fibrinogen solubility and limits fibrin assembly and 2) sensitizing fibrin to conditions that influence assembly and clot structure.  相似文献   

19.
Several proteins are known to bind to a fibrin network and to change clot properties or function. In this study we aimed to get an overview of fibrin clot-bound plasma proteins. A plasma clot was formed by adding thrombin, CaCl(2) and aprotinin to citrated platelet-poor plasma and unbound proteins were washed away with Tris-buffered saline. Non-covalently bound proteins were extracted, separated with 2D gel electrophoresis and visualized with Sypro Ruby. Excised protein spots were analyzed with mass spectrometry. The identity of the proteins was verified by checking the mass of the protein, and, if necessary, by Western blot analysis. Next to established fibrin-binding proteins we identified several novel fibrin clot-bound plasma proteins, including α(2)-macroglobulin, carboxypeptidase N, α(1)-antitrypsin, haptoglobin, serum amyloid P, and the apolipoproteins A-I, E, J, and A-IV. The latter six proteins are associated with high-density lipoprotein particles. In addition we showed that high-density lipoprotein associated proteins were also present in fibrinogen preparations purified from plasma. Most plasma proteins in a fibrin clot can be classified into three groups according to either blood coagulation, protease inhibition or high-density lipoprotein metabolism. The presence of high-density lipoprotein in clots might point to a role in hemostasis.  相似文献   

20.
alpha 2-Plasmin inhibitor, a primary inhibitor of fibrinolysis, is cross-linked to fibrin by plasma transglutaminase (glutaminyl-peptide:amine gamma-glutamyltransferase, EC 2.3.2.13, activated fibrin-stabilizing factor) when blood coagulation takes place. alpha 2-Plasmin inhibitor was found also to be cross-linked to fibrinogen by plasma transglutaminase. The inhibitor was corss-linked exclusively to the A alpha-chain of fibrinogen, and the cross-linking reaction proceeded very rapidly. The reaction was almost completed before the formation of the gamma-chain dimers of fibrinogen which precedes cross-linking polymerization of the A alpha-chain of fibrinogen. The maximum level of inhibitor cross-linking achieved was approx. 30% of the inhibitor present at the start of the reaction. The level of cross-linking of the inhibitor was not changed when the cross-linking reaction was preceded by dimerization of fibrinogen. The cross-linking reaction was found to be a reversible one, since the cross-linked complex of the inhibitor and fibrinogen was partly dissociated to each of its components when the complex was incubated with plasma transglutaminase. These results suggest that the self-limiting nature of the cross-linking reaction between alpha 2-plasmin inhibitor and fibrin(ogen) is due to the reaction equilibrium favoring dissociation of the complex, and not due to the development of structural hindrance in polymerizing fibrin(ogen).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号