首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among oxysterols oxidized at C7 (7α-, 7β-hydroxycholesterol, and 7-ketocholesterol), 7β-hydroxycholesterol and 7-ketocholesterol involved in the cytotoxicity of oxidized low density lipoproteins (LDL) are potent inducers of apoptosis. Here, we asked whether all oxysterols oxidized at C7 were able to trigger apoptosis, to stimulate interleukin (IL)-1β and/or tumor necrosis factor (TNF)-α secretion, and to enhance adhesion molecule expression (intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin) on human umbilical venous endothelial cells (HUVECs). Only 7β-hydroxycholesterol and 7-ketocholesterol were potent inducers of apoptosis and of IL-1β secretion. TNF-α secretion was never detected. Depending on the oxysterol considered, various levels of ICAM-1, VCAM-1 and E-selectin expression were observed. So, oxysterols oxidized at C7 differently injure and activate HUVECs, and the α- or β-hydroxyl radical position plays a key role in apoptosis and IL-1β secretion.  相似文献   

2.
Oxidized low density lipoprotein (oxLDL) induces apoptosis in macrophages, smooth muscle cells, and endothelial cells. To elucidate the molecular mechanism of oxLDL-induced cytotoxicity and determine its tissue specificity, we have used Chinese hamster ovary (CHO)-K1 cells expressing human CD36 (CHO/CD36). Expression of CD36 rendered these cells susceptible to killing by oxLDL. This cytotoxicity was due to the induction of apoptosis. Therefore, CD36 expression is the only requirement for oxLDL-induced apoptosis. Oxysterols apparently mediate the cytotoxicity of oxLDL in macrophage foam cells and endothelial cells. 25-Hydroxycholesterol, at concentrations higher than 1 microg/ml, killed CHO-K1 cells, by apoptosis, in medium supplemented with serum as a source of cholesterol. These effects were not seen in a 25-hydroxycholesterol-resistant CHO/CD36 mutant (OX(R)), which was otherwise capable of undergoing apoptosis in response to staurosporine. This mutant was also resistant to killing by oxLDL, suggesting that oxysterols are at least partially responsible for the toxic effects of oxLDL. Oxysterol-induced apoptosis did not involve regulation of sterol regulatory element-binding protein proteolysis or the cholesterol biosynthetic pathway. 25-Hydroxycholesterol stimulated calcium uptake by CHO-K1 cells within 2 min after addition. Treatment of CHO or THP-1 (macrophage) cells with the calcium channel blocker nifedipine prevented 25-hydroxycholesterol induction of apoptosis. OX(R) showed no enhanced calcium uptake in response to 25-hydroxycholesterol.  相似文献   

3.
Akt plays a role in protecting macrophages from apoptosis induced by some oxysterols. Previously we observed enhanced degradation of Akt in P388D1 moncocyte/macrophages following treatment with 25-hydroxycholesterol (25-OH) or 7-ketocholesterol (7-KC). In the present report we examine the role of the ubiquitin proteasomal pathway in this process. We show that treatment with 25-OH or 7-KC results in the accumulation of poly-ubiquitinated Akt, an effect that is enhanced by co-treatment with the proteasome inhibitor MG-132. Modification of Akt by the addition of a Gly-Ala repeat (GAr), a domain known to block ubiquitin-dependent targeting of proteins to the proteasome, resulted in a chimeric protein that is resistant to turn-over induced by 25-OH or 7-KC and provides protection from apoptosis induced by these oxysterols. These results uncover a new aspect of oxysterol regulation of Akt in macrophages; oxysterol-stimulated poly-ubiquitination of Akt and degradation by the proteasomal pathway.  相似文献   

4.
5.
Oxidized low-density lipoprotein contains many potentially proatherogenic molecules, including oxysterols, which have been shown to induce apoptosis in various cell lines. The aim of this study was to investigate the pathway of apoptosis induced by oxidized low-density lipoprotein and the oxysterols, 7beta-hydroxycholesterol and cholesterol-5beta,6beta-epoxide, in two human monocytic cell lines. The HL-60 cells appeared to be more sensitive to oxidized low-density lipoprotein than U937 cells, whereas the isolated oxysterols were more potent inducers of apoptosis in the U937 cells. Caspase-2 inhibition decreased the number of viable cells in oxidized low-density lipoprotein-treated samples; however, it protected against cholesterol-5beta,6beta-epoxide-induced cell death. Western blot analysis was utilized to examine the effect of caspase-2 inhibition on the expression of the antiapoptotic protein Bcl-2. Pretreatment with the inhibitor protected against the decrease in Bcl-2 expression in oxidized low-density lipoprotein- and 7beta-hydroxycholesterol-treated U937 cells. In HL-60 cells, Bcl-2 was overexpressed in oxidized low-density lipoprotein-treated cells, but in the presence of the inhibitor Bcl-2 expression was returned to control levels. Depleted ATP concentrations in the cells suggest that both apoptosis and necrosis may have occurred simultaneously. Our results highlight differences in the signaling pathways induced by oxidized low-density lipoprotein, 7beta-hydroxycholesterol, and cholesterol-5beta,6beta-epoxide in U937 and HL-60 cells.  相似文献   

6.
7.
8.
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.  相似文献   

9.
25-hydroxycholesterol (25-OH-chol) induces apoptosis in many cell types. The present study investigated the possible involvement of mitochondria-dependent apoptotic signalling molecules in the death of PC12 cells treated with 25-OH-chol. 25-OH-chol increased the production of reactive oxygen species and opened mitochondrial permeability transition pore, resulting in release of cytochrome c and subsequent activation of caspase-9 and -3. 25-OH-chol induced the activation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-3beta (GSK-3beta). The JNK inhibitor SP600125 attenuated the activation of caspase-9 and -3 and reduced 25-OH-chol-induced cell death. GSK inhibitors SB415286 and SB216763 significantly down-regulated JNK activity and attenuated the cytotoxicity of 25-hydroxycholesterol. However, SP600125 did not alter the activity of GSK-3beta. The results indicate that 25-OH-chol induces cell death via activation of GSK-3beta and subsequent up-regulation of JNK. Pharmacological intervention of GSK-3beta-JNK-caspase signalling pathway may be useful for the reduction of cytotoxicity of oxysterols.  相似文献   

10.
Feedback repression of the genes encoding the low density lipoprotein receptor and several enzymes of the cholesterol biosynthetic pathway is mediated by 25-hydroxycholesterol and other oxysterols. In this study, we have cloned a rabbit cDNA encoding an oxysterol-binding protein that may play a role in this regulation. The predicted amino acid sequence revealed a protein of 809 amino acids with two distinctive features: 1) a glycine- and alanine-rich region (63% of 80 residues) at the NH2 terminus, and 2) a 35-residue leucine zipper motif that may mediate the previously observed oligomerization of the protein. When transfected into simian COS cells, the rabbit cDNA produced a protein that exhibited the same affinity and specificity for sterols as the previously purified hamster liver protein. Immunoblotting analysis showed that the rabbit cDNA encodes both the 96- and 101-kilodalton forms of the oxysterol-binding protein that were previously observed. The availability of an expressible cDNA for the oxysterol-binding protein should help elucidate its role in sterol metabolism.  相似文献   

11.
Cancer, an unrestrained proliferation of cells, is one of the lead cause of death. Nearly 12.5 million people are diagnosed with cancer worldwide, 7.5 million people die of which 2.5 million cases are from India. Major cause for cancer is restriction of programmed cell death (apoptosis). Multiple signaling pathways regulate apoptosis. Bcl-2 (B - Cell Lymphomas-2) family proteins play a vital role as central regulators of apoptosis. Bcl-2L10, a novel anti-apoptotic protein, blocks apoptosis by mitochondrial dependent mechanism. The present study evaluates the 3D structure of Bcl-2L10 protein using homology modeling and aims to understand plausible functional and binding interactions between Bcl-2L10 with BH3 domain of BAX using protein - protein docking. The docking studies show binding of BH3 domain at Lys 110, Trp-111, Pro-115, Glu-119 and Asp-127 in the groove of BH 1, 2 and 3 domains of Bcl-2L10. Heterodimerization of anti-apoptotic Bcl-2 and BH3 domain of pro-apoptotic Bcl-2 proteins instigates apoptosis. Profound understanding of Bcl-2 pathway may prove useful in identification of future therapeutic targets for cancer.  相似文献   

12.
Owing at least in part to oxysterol components that can induce apoptosis, oxidized LDL (oxLDL) is cytotoxic to mammalian cells with receptors that can internalize it. Vascular cells possess such receptors, and it appears that the apoptotic response of vascular cells to the oxysterols borne by oxLDL is an important part of the atherogenic effects of oxLDL. Thus, an analysis of the signaling pathway of apoptotic induction by oxysterols is of value in understanding the development of atherosclerotic plaque. In a prior study, we demonstrated an induction of calcium ion flux into cells treated with 25-hydroxycholesterol (25-OHC) and showed that this response is essential for 25-OHC-induced apoptosis. One possible signal transduction pathway initiated by calcium ion fluxes is the activation of cytosolic phospholipase A2 (cPLA2). In the current study, we demonstrate that activation of cPLA2 does occur in both macrophages and fibroblasts treated with 25-OHC or oxLDL. Activation is evidenced by 25-OHC-induced relocalization of cPLA2 to the nuclear envelope and arachidonic acid release. Loss of cPLA2 activity, either through genetic knockout in mice, or by treatment with a cPLA2 inhibitor, results in an attenuation of arachidonic acid release as well as of the apoptotic response to oxLDL in peritoneal macrophages or to 25-OHC in cultured fibroblast and macrophage cell lines.  相似文献   

13.
Oxysterols, 27-carbon atoms cholesterol oxidation products, are consistently detectable in minimally oxidized low density lipoproteins (oxLDLs) and accumulate in the core of fibrotic plaques. Several oxysterols of pathophysiological interest have been shown to possess many and diverse biochemical activities. In particular, 7-ketocholesterol (7K), a major cholesterol oxide both in oxLDLs and in atherosclerotic lesions, is able to lead vascular cells to apoptosis. Indeed, when 7K is added to cells of the macrophage lineage, in a concentration range actually detectable in hypercholesterolemic patients, a marked apoptotic effect was observed. However, when identical concentrations of 7K are given to the same cells in a mixture with other oxysterols, also detectable in human low density lipoprotein (LDL), cell apoptosis was dramatically reduced. Of note, identical amounts of unoxidized cholesterol did not show any significant pro-apoptotic effect. With the aim to investigate the mechanisms underlying the quenching of 7K-dependent apoptosis by the oxysterol mixture, we found that the combined oxysterol mixture counteracted the ability of 7K given alone to strongly increase the steady-state level of reactive oxygen species (ROS) in macrophages as well as the up-regulation of the pro-apoptotic factor p21 and the triggering of the mitochondria-dependent pathway of apoptosis. Competition among oxysterols, apparently at NADPH oxidase level, diminishes the macrophage ROS production and direct toxicity that is evoked by defined oxysterols, as for instance, 7-ketocholesterol.  相似文献   

14.
The activation of c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in the induction of cell apoptosis. We previously reported that magnesium tanshinoate B (MTB), a compound purified from a Chinese herb danshen (Salvia miltiorrhiza), could inhibit ischemia/reperfusion-induced myocyte apoptosis in the heart. The objective of the present study was to investigate whether MTB can prevent oxidized lipoprotein-induced apoptosis in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated with copper-oxidized very low density lipoprotein (Cu-OxVLDL) or copper-oxidized low density lipoprotein (Cu-OxLDL). Treatment of cells with Cu-OxVLDL or Cu-OxLDL resulted in a 3-fold increase in the JNK activity. The amount of cytochrome c released and the activity of caspase-3 in cells treated with Cu-OxVLDL or Cu-OxLDL were significantly elevated, indicating the occurrence of apoptosis. The presence of MTB was able to abolish the JNK activation, cytochrome c release, and caspase-3 activation induced by Cu-OxVLDL or Cu-OxLDL, resulting in a marked reduction in apoptosis in endothelial cells. The data from this study indicate that oxidized lipoproteins induce apoptosis in endothelial cells. We postulate that the inhibition of the JNK signaling pathway by MTB is a key mechanism that protects these cells from oxidized lipoprotein-induced apoptosis.  相似文献   

15.
Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.  相似文献   

16.
The presence of oxidized sterols (oxysterols) in human serum and lesions has been linked to the initiation and progression of atherosclerosis. Data concerning the origin, identity and quantity of oxysterols in biological samples are controversial and inconsistent. This inconsistency may arise from different analytical methods or handling conditions used by different investigators. In the present study, oxysterol levels and distribution were analyzed by an optimized GC-MS method, in human atherosclerotic coronary and carotid lesions, in atherosclerotic apolipoprotein E deficient mice (E° mice) and in native and in vitro oxidized human low and high density lipoproteins. Oxysterol levels were analyzed with a limit of detection of 0.06 – 0.24 ng, with 25-hydroxycholesterol (25-OH) being the least sensitive. In human coronary and carotid lesions, obtained from endatherectomic samples, 27-hydroxycholesterol (27-OH) was the major oxysterol, with about 85% as sterols esterified to fatty acids. While total cholesterol and oxysterols levels were similar in both kinds of human lesions, oxysterol distribution was significantly different. In coronary lesions the mean levels of 27-OH and 7β-hydroxycholesterol (7β-OH) were 38% and 20% of total oxysterols, whereas in carotid lesions their mean levels were 66% and 5%, respectively. Unlike in human aortic lesions, 27-OH was entirely absent in E° mice, whereas the level of 7α-hydroxycholesterol (7α-OH) was 28% of the total oxysterols, vs. 5% in human coronary lesions. As 27-OH is an enzymatic product of cholesterol oxidation, this finding may indicate that such an enzymatic process does not take place in E° mice.  相似文献   

17.
The pro-apoptotic BAX protein contains a BH3 domain that is necessary for its dimerization and for activation of the intrinsic apoptotic pathway. The MUC1 (mucin 1) heterodimeric protein is overexpressed in diverse human carcinomas and blocks apoptosis in the response to stress. In this study, we demonstrate that the oncogenic MUC1-C subunit associates with BAX in human cancer cells. MUC1-C·BAX complexes are detectable in the cytoplasm and mitochondria and are induced by genotoxic and oxidative stress. The association between MUC1-C and BAX is supported by the demonstration that the MUC1-C cytoplasmic domain is sufficient for the interaction with BAX. The results further show that the MUC1-C cytoplasmic domain CQC motif binds directly to the BAX BH3 domain at Cys-62. Consistent with binding to the BAX BH3 domain, MUC1-C blocked BAX dimerization in response to (i) truncated BID in vitro and (ii) treatment of cancer cells with DNA-damaging agents. In concert with these results, MUC1-C attenuated localization of BAX to mitochondria and the release of cytochrome c. These findings indicate that the MUC1-C oncoprotein binds directly to the BAX BH3 domain and thereby blocks BAX function in activating the mitochondrial death pathway.  相似文献   

18.
19.
Oxysterols, or cholesterol oxidation products, are oxygenated derivatives of cholesterol which are formed endogenously during the biosynthesis of bile acids and steroid hormones. In addition, oxysterols may also be absorbed from the diet as they are found in many commonly consumed foods. Oxysterols have been shown to possess many potent and diverse biological activities, and the study of the effects of these oxidation products on the human body forms a wide field of research. The results of most research efforts support the conclusion that certain oxysterols, predominantly those found in oxidized low-density lipoprotein, exert pathological effects such as the induction of apoptotic cell death. Moreover, apoptosis induced by oxysterols has been strongly implicated in the pathogenesis of atherosclerosis as well as a variety of other diseases. The study of oxysterol-induced apoptosis is an emerging area, and the following review aims to provide a detailed account on the chronology of events involved. Current evidence of the involvement of the death receptor pathway and protein kinases is examined as well as important apoptosis regulators such as the mitochondria, B-cell lymphoma-2 proteins and caspases. The effect of oxysterols on gene expression, protein interactions and membrane properties are also discussed.  相似文献   

20.
Breast cancer cells often show increased activity of the mitogen-activated protein kinase (MAPK) pathway. We report here that this pathway reduces their sensitivity to death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and present the underlying mechanism. Activation of protein kinase C (PKC) inhibited TRAIL-induced apoptosis in a protein synthesis-independent manner. Deliberate activation of MAPK was also inhibitory. In digitonin-permeabilized cells, PKC activation interfered with the capacity of recombinant truncated (t)Bid to release cytochrome c from mitochondria. MAPK activation did not affect TRAIL or tumor necrosis factor (TNF)alpha-induced Bid cleavage. However, it did inhibit translocation of (t)Bid to mitochondria as determined both by subcellular fractionation analysis and confocal microscopy. Steady state tBid mitochondrial localization was prohibited by activation of the MAPK pathway, also when the Bcl-2 homology domain 3 (BH3) domain of tBid was disrupted. We conclude that the MAPK pathway inhibits TRAIL-induced apoptosis in MCF-7 cells by prohibiting anchoring of tBid to the mitochondrial membrane. This anchoring is independent of its interaction with resident Bcl-2 family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号