首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Botrytis cinerea, the causal agent of grey mould in a broad range of crops, is considered a high‐risk plant pathogen for fungicide resistance development. The use of fungicide mixtures, particularly combinations with synergistic activity, can be a useful tactic to counteract resistance build‐up in pathogen populations. The present study aimed to investigate the effects of different ratios of two‐way mixtures of carbendazim, iprodione, kresoxim‐methyl, tebuconazole and penconazole on four B. cinerea isolates that were sensitive or resistant to benzimidazoles, dicarboximides and strobilurins. The isolates that were resistant to benzimidazoles and strobilurins had E198A and G143A mutations in β‐tubulin and cytochrome b genes, respectively. The mixtures had different effects on each of the isolates in vitro but, in 13 combinations, the synergistic effect was observed against all or three isolates. In greenhouse experiments, 11 fungicide combinations used in decreased (EC75) concentrations showed the maximum control efficiency. The two follow‐up greenhouse experiments using six selected combinations revealed they were highly effective against additional isolates with various fungicide resistance profiles. The identified mixtures‐ratios have potential for use in grey mould management programs in the greenhouse.  相似文献   

2.
    
Grey mould, caused by the fungus Botrytis cinerea Pers ex Fr., is a very destructive and important disease worldwide. Fluazinam is a phenylpyridinamine fungicide with broad‐spectrum activities. The baseline sensitivity of B. cinerea to fluazinam is yet to be established in Henan Province, China. In this study, a total of 117 field isolates of B. cinerea were collected from 49 commercial greenhouses in different locations of Henan Province, in 2016, and the sensitivities of these isolates to fluazinam were determined based on mycelial growth. The effective concentration for 50% (EC50) values ranged from 0.0038 to 0.0441 μg/ml, and the mean EC50 value was 0.0201 ± 0.0081 μg/ml for mycelial growth. The frequency distribution range presented a unimodal curve. To define the cross‐resistance relationships, the linear correlation coefficients of the EC50 values between fluazinam and carbendazim, procymidone, pyrimethanil or boscalid were analysed. The results showed that no correlation was observed between fluazinam and the other tested fungicides. These results provide important information to growers for the prevention and control of grey mould.  相似文献   

3.
    
Grey mould, caused by Botrytis cinerea Pers ex Fr., is one of the most common diseases of tomato worldwide. Fludioxonil belongs to the phenylpyrrole fungicides, which have high activity against B. cinerea. The sensitivity of fludioxonil was evaluated on the basis of the level of inhibition of mycelium growth in 274 B. cinerea isolates collected from different locations (untreated with this fungicide) in Henan Province, China. The EC50 values for fludioxonil ranged from 0.0033 to 0.0415 mg/l, and the average EC50 values were 0.0156 ± 0.0078 mg/l. Three fludioxonil‐resistant mutants were obtained by subculturing fludioxonil‐sensitive wild‐type isolates on continuously increasing fludioxonil concentrations. For the cross‐resistance assay, fludioxonil revealed positive cross‐resistance with procymidone but did not reveal cross‐resistance with pyrimethanil, boscalid and trifloxystrobin. Mycelial growth, conidial production, hyphal dry weight and pathogenicity were diminished significantly between the fludioxonil‐resistant mutants and their sensitive wild‐type parental isolates. This study shows for the first time that fludioxonil‐resistant isolates of B. cinerea are still not present in Henan Province because this fungicide is an attractive and effective fungicide for chemical control. Recommendations can be made to growers to use fludioxonil to control grey mould and to consider the potential moderate resistance risk of using this fungicide.  相似文献   

4.
    
Laboratory experiments were conducted to develop an assay for evaluation of carrot (Daucus carota L.) leaf reaction to Botrytis cinerea Pers. ex Pers. The detached carrot leaflets were inoculated with the colonized agar plugs attached to the cut surface of the midrib or by spraying conidial suspension. The estimation of the infected leaflet area expressed as the area under the disease progress curve enabled the discrimination between carrot genotypes differing in their susceptibility to the pathogen. Evaluation based on the measurement of the length of the midrib lesion did not allow such differentiation. The inoculation of leaf surface with suspension of conidia was less reliable and the development of the disease symptoms was not reproducible. The established assay using colonized plugs enables a fast assessment of carrot leaf susceptibility to grey mould and can be particularly useful for a non‐destructive, preliminary evaluation of precious and limited source materials.  相似文献   

5.
    
Grey mould, caused by the fungal pathogen Botrytis cinerea, is one of the most devastating tomato diseases, and the control of this disease is mainly by the application of chemicals. In this study, 512 isolates of B. cinerea were collected from tomato grown in greenhouses at 10 locations in 10 cities of Hebei Province from 2011 to 2016 and tested for their sensitivities to carbendazim (Car), diethofencarb (Die), iprodione (Ipr) and pyrimethanil (Pyr). Of these tested isolates, 95.7%, 95.2%, 31.6% and 89.4% were resistant to Car, Die, Ipr and Pyr, respectively. There were nine fungicide‐resistant phenotypes in the tested isolates. CarRPyrRDieRIPRS and CarRPyrRDieRIPRR were the most common phenotypes, accounting for 59.6%, and 31.1% of the tested isolates, respectively. The field trials showed that the control efficacies (CE) of carbendazim + diethofencarb (WP, 25% + 25%), pyrimethanil (EC, 40%) and iprodione (WP, 50%) at the recommended doses were 22.75%–29.23%, 58.44%–64.19% and 61.02%–65.17%, respectively, significantly lower than those of boscalid (WG, 50%) and pyrisoxazole (EC, 25%). The resistance management trial conducted from 2015 to 2017 indicated that the CE of tomato grey mould in the experimental fields was higher than 90% and the sensitivity to carbendazim, diethofencarb and pyrimethanil of B. cinerea isolates from the experimental fields increased on a yearly basis. These results showed that the frequency of resistance to Car, Die, Ipr and Pyr was high, and these four fungicides could not effectively control tomato grey mould. Tomato grey mould could be controlled by using biopesticides and newly synthesized fungicides with different modes of action. Our findings would be useful in designing and implementing fungicide resistance management spray programmes for the control of tomato grey mould.  相似文献   

6.
    
Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma–plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR‐prime phase). Finally, we discuss the ISR‐boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.  相似文献   

7.
Once the inoculum of B. cinerea conies into contact with the host and starts to be active in the phyllosphere of a susceptible host tissue, a series of events take place. These events may develop into a process that leads to necrosis of the host, or may end in an arrested infection with minimal damage to the host tissue. Increased susceptibility to the pathogen is associated with factors that enhance ageing of the host tissues, such as the plant hormones ethylene and abscisic acid and elevation of free radical levels in the host tissue. Decreased susceptibility is obtained by inhibiting the production or activity of such factors in the presence of increased levels of plant hormones such as gibberellic acid, and by increasing the calcium content of the cell walls and by scavenging of free radicals in the host tissue. There is evidence for the induction of resistance in hosts affected by B. cinerea. Host tissues challenged by B. cinerea react at the DNA, RNA and protein level and accumulate pathogenicity related proteins, phytoalexins or other phenolic compounds. Deposition of polymers in cell walls and lignification have also been recorded in various hosts. The role of each of these factors in relation to protection is not clear. Moreover, some of the phenomena may occur too late to protect the host tissue against infection. Although the inhibition of specific proteins such as polygalacturonases has been suggested as a mechanism by which to inhibit disease, it is unlikely that the inhibition of one enzyme, would lead to significant restriction of infection. However, simultaneous inhibition of several hydrolytic enzymes produced by the pathogen should result in disease suppression. Possibilities of reducing the susceptibility of hosts or arresting further development of localized infections are discussed.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Apple fruits are rich in phenolic compounds that may enhance resistance to grey mould disease caused by Botrytis cinerea. Using Malus domestica Borkh. cultivars Fuji and Qinguan, we analysed the contents of total phenols, total flavonoids, eight individual phenolic compounds, H2O2 and O2.? as well as the activities of key enzymes in the phenylpropanoid pathway in the flesh of control and B. cinerea‐inoculated fruits. Chlorogenic acid contents increased for a short period in the less susceptible cultivar Qinguan fruits, but decreased in the disease‐susceptible Fuji fruits. Additionally, ferulic acid production was induced in both cultivars in response to B. cinerea. Furthermore, the activities of phenylalanine ammonia lyase, cinnamate 4‐hydroxylase, 4‐coumarate:coenzyme A ligase and cinnamyl alcohol dehydrogenase were differentially induced between the two apple cultivars. Remarkably, the contents of H2O2 and O2.? as well as the activities of enzymes in phenolic metabolism tested in this study were always higher in Qinguan fruits than in Fuji fruits. Our data imply that phenylpropanoid metabolism is closely associated with apple fruit resistance to grey mould disease. These findings may be useful for characterizing the mechanism(s) underlying plant resistance to B. cinerea, with potential implications for the screening of grey mould disease‐resistant apple varieties in breeding programmes.  相似文献   

9.
害虫对氟虫腈的抗药性研究进展   总被引:1,自引:0,他引:1  
氟虫腈是第一个商品化的苯基吡唑类杀虫剂,其作用机理是抑制γ-氨基丁酸(GABA)受体氯离子通道。氟虫腈为防治一些世界性的重大害虫包括对以前使用的杀虫剂具有严重抗性的害虫作出了重要贡献。然而,随着氟虫腈的大量使用,害虫对该药的抗药性问题受到日益关注。至今,重要的农业害虫如小菜蛾,烟粉虱、褐飞虱、白背飞虱,二化螟及斜纹夜蛾等已经对氟虫腈产生抗药性。文章就害虫对氟虫腈的抗药性发生概况、交互抗性及抗药性机理策略进行综述,以期为氟虫腈的合理使用提供理论基础。  相似文献   

10.
Resistance to Rhipicephalus appendiculatus, Amblyomma variegatum and Amblyomma hebraeum was investigated in the laboratory by infesting rabbits with adults of each of the three species followed by homospecific or heterospecific secondary infestations. Significantly lower female engorged weights and egg mass weights were taken as evidence of protective immunity. Following a single infestation with adults, rabbits developed homospecific protective immunity (resistance) to only R. appendiculatus and A. hebraeum; primary infestation with A variegatum did not protect against secondary infestation with the same species. There was no cross-resistance (heterospecific protective immunity) between the species except for one-way protection between R. appendiculatus and A. variegatum; primary infestation with R. appendiculatus protected against secondary infestation with A. variegatum, but not vice versa. The results from ELISA did not indicate any correlation between serum antibodies to soluble antigens from salivary gland extracts and protective immunity. Post-infestation sera from rabbits infested with each of the three species reacted strongly to their respective salivary gland extracts. Despite the high reactivity of A. variegatum serum with salivary gland antigens from all three species, A. variegatum-infested rabbits did not show any homospecific or heterospecific immunity; on the other hand, although R. appendiculatus serum did not react positively to A. variegatum antigens, infestation with R. appendiculatus protected against a subsequent A. variegatum infestation.  相似文献   

11.
  总被引:1,自引:0,他引:1  
Fungicide resistance frequencies of Botrytis cinerea populations in the German Wine Road region were determined for 4 years. Strains showing specific resistance against carbendazim, iprodione or fenhexamid were found to occur wide‐spread, but at low frequencies. In contrast, cyprodinil resistance increased from 5.4% in 2006 to 21.9% in 2008 and 16% in 2009, and strains resistant to boscalid increased from 2% in 2006 to 26.7% in 2009. Strains with multidrug resistance (MDR) phenotypes were found at high frequencies. One of the three MDR phenotypes, MDR1, with reduced sensitivity to cyprodinil and fludioxonil, was dominating, representing 19% to 35% of the total population. Strains with a combination of cyprodinil resistance and MDR1 were found to be strongly increasing in 2008 and 2009.  相似文献   

12.
  总被引:1,自引:0,他引:1  
Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea , a necrotrophic pathogen of A. thaliana . Exposure of B. cinerea to camalexin induces expression of BcatrB , an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3 , cyp71A13 , pad3 or pad2 , and was strongly reduced in ups1 . Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.  相似文献   

13.
    
Abstract

The effect of acetic acid vapours at three application times on grey and blue moulds on the incidence of apple fruits was studied. Acetic acid vapour at 6 µl/l caused complete inhibition of linear growth and spore germination of Botrytis cinerea and Penicillium sp. The most effective concentration was AA at 4 µl/l, which reduced spore germination and linear growth by more than 82.4 and 68.3% of both fungi respectively compared with un-fumigated fungi. On other trials the diameter of the inhibited growth zone of both fungi gradually increased as AA concentrations increased. The highest increase in inhibition zone diameter was obtained with AA at 12 µl/l followed by AA at 8 µl/l, meanwhile AA at 4 µl/l had a moderate effect. Apple fruits were divided into three groups, the first was fumigated at 24 h before inoculation, the second at zero time the and third at 24 h after inoculation and storage for 30 days. Results indicate that the higher reduction of grey and blue mould incidence was obtained with AA at 12 µl/l of three application times which reduced the disease incidence by more than 81.0, 81.0 and 73.5% before, at zero time and after inoculation, respectively. Acetic acid at 8 µl/l reduced the incidence of both diseases more than 52.0% with all application times. As for application times the most effective times were 24 before and at the zero time of inoculation which reduced both diseases more than 81.0 and 75.5 with AA vapours at 12 and 8 µl/l, respectively. Meanwhile treated apple fruits after inoculation was less effective. The same trend between disease incidence and percentage of rotted tissue parts was observed. It could be suggested that acetic acid vapours might be safely used commercially for controlling post-harvest disease of apple fruits during storage.  相似文献   

14.
    
《Current biology : CB》2021,31(23):5314-5326.e10
  相似文献   

15.
用昆虫生长调节剂(insect growth regulator,简称IGR)定虫隆(chlorfluazuron)对源自深圳田间的小菜蛾(SZ-S)Plutella xylostella(L.)在室内进行抗性种群选育,经过8代饲养和6次药剂汰选,获得抗性种群(CH-R),与相对敏感种群Sz—S比较,抗性指数(R1)为23.78倍。CH-R种群在去除选择压力条件下饲养5代,抗性逐渐下降。抗性汰选前后分别测定了10种药剂的剂量—死亡毒力回归线,发现CH—R抗性种群对三氟氯氰菊酯、氯氰菊酯、辛硫磷、喹硫磷、灭多威、磺胺脲类衍生物—杀螨隆、微生物杀虫剂Bt和齐墩螨素无明显交互抗性,抗性倍数为0.4-1.7;对两种沙蚕毒素类杀虫剂杀螟丹和杀虫丹的敏感性却有所上升,有负交互抗性趋势。活体增效剂试验表明,增效醚(PBO)和三苯基磷酸酯(TPP)对定虫隆均有一定的增效活性,PBO的增效比最高为29倍,能够完全抑制对定虫隆的抗性,说明多功能氧化酶可能是主导抗性机制之一。  相似文献   

16.
    
Macadamia cultivation plays significant role in the economy of South Africa. Despite its importance, the industry grapples with disease-related challenges, notably flower blight, which threatens substantial economic losses by affecting yield and nut quality. In 2022, diagnostic services at the Agricultural Research Council and the Forestry and Agricultural Biotechnology Institute received macadamia flowers displaying blight symptoms. Employing two methods for fungal isolation, 25 isolates were obtained which were classified into one group based on morphological characteristics. DNA analysis identified the isolates as Botrytis cinerea. The pathogenicity testing was conducted on macadamia flowers to confirm Koch's postulates. This is the first report of B. cinerea affecting Macadamia integrifolia Maiden & Betche in South Africa, underlining its potential threat to the industry.  相似文献   

17.
    
Succinate dehydrogenase inhibitor (SDHI) fungicides constitute a relatively recent fungicide class registered for the treatment of grey mould on grapevine in Italy. The sensitivity profile to a novel compound fluopyram was established for a set of 203 Botrytis cinerea isolates collected from Sicilian vineyards within 2009–2012 prior its introduction into market. In addition, its performances were compared in in vitro and in vivo assays with other registered SDHI fungicide boscalid, to evaluate their frequency distributions EC50 values and cross‐resistance patterns. Results of the article showed that EC50 values for fluopyram ranged from 0.05 to 1.98 µg mL?1. Although EC50 values of boscalid ranged from 0.01 to 89.52 µg mL?1, no cross‐resistance relationship was observed between the two fungicides (r = 0.003; P = 0.964) within our B. cinerea population. On further confirming these data, boscalid failed in controlling grey mould infections when boscalid‐resistant isolates were inoculated on grape berries whereas fluopyram exhibited a good efficacy against the same isolates. This study represents the first report on the baseline sensitivity to fluopyram within B. cinerea population from Sicilian table grape vineyards in Italy, and it clearly shows the lack of cross‐resistance in vitro and in vivo between fluopyram and boscalid for the field pathogen isolates. These results provided useful information for managing of fungicide resistance suggesting that fluopyram could be a valid alternative to boscalid for the control of grey mould of table grape.  相似文献   

18.
    
《Trends in microbiology》2015,23(7):401-407
  相似文献   

19.
    
During 2007 and 2008, 392 isolates of Plasmopara viticola were collected from 11 regions in seven provinces in China, and their sensitivities to metalaxyl and dimethomorph were determined by the floating leaf disk technique. Among all isolates, 13% were classified as sensitive, 26% as low‐level resistant, and 61% as resistant to metalaxyl. Of the 392, 85 were from vineyards never treated with carboxylic acid amide fungicides; these isolates were used to determine the baseline sensitivity to dimethomorph, and their EC50 values ranged from 0.01 to 0.21 (mean ± SD, 0.11 ± 0.04) μg/ml. The other 307 isolates were completely inhibited by a single discriminatory dose of 1.6 μg/ml of dimethomorph.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号