首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beale SI  Foley T 《Plant physiology》1982,69(6):1331-1333
N-Methyl mesoporphyrin IX, an inhibitor of heme synthesis, increases extractable δ-aminolevulinic acid (ALA) synthase activity when administered to growing cultures of Euglena gracilis Klebs strain Z Pringsheim in micromolar concentrations. Wild-type light-grown green cells and white aplastidic cells exhibited 2.8-fold and 1.8-fold increases, respectively, in ALA synthase activity within five to six hours after incubation with 4 × 10−6 molar N-methyl mesoporphyrin IX. Protoheme levels were decreased and 59Fe incorporation into heme was inhibited by N-methyl mesoporphyrin IX, indicating that, as in animal cells, N-methyl mesoporphyrin IX acts specifically to block iron insertion into protoporphyrin IX. Chlorophyll synthesis in wild-type cells was not affected within the first 6 hours after administration of N-methyl mesoporphyrin IX.  相似文献   

2.
Foley T  Beale SI 《Plant physiology》1982,70(5):1495-1502
γ,δ-Dioxovaleric acid (DOVA) has been proposed as a precursor to heme and chlorophyll in plants and algae. DOVA transaminase activity was found in extracts of the unicellular green alga Euglena gracilis Klebs strain Z Pringsheim. Optimum conversion of DOVA to δ-aminolevulinic acid (ALA) occurred at pH 6.8. ALA formation was linear with time for at least 30 minutes at 37° C and was proportional to amount of cell extract in the incubation mixture. Boiled cell extract was inactive. DOVA transaminase from either wild-type or aplastidic derivative strain W14ZNaIL ran as a single band in agarose gel permeation chromatography, with a calculated molecular weight of 98,000 ± 3,000. l-Glutamic acid was the most effective amino donor. d-Glutamic acid was inactive. Km values for l-glutamic acid and DOVA were 11 and 1.1 millimolar, respectively. Pyridoxal phosphate stimulated activity maximally at 30 micromolar, and (aminooxy)acetate was strongly inhibitory. Glyoxylic acid was a competitive inhibitor with respect to DOVA, with an inhibition constant of 0.62 millimolar. Wild-type and aplastidic cells vielded equal activity, 31 ± 1 nanomoles ALA per 30 minutes per 107 cells, whether grown in light or dark. DOVA transaminase could not be separated from glyoxylate transaminase activity by agarose gel permeation or diethylaminoethyl-cellulose column chromatography. In all fractions, glyoxylate transaminase activity was at least 75 times greater than DOVA transaminase activity. DOVA transamination appears to be catalyzed by glyoxylate transaminase, and not to be of physiological significance with respect to chlorophyll synthesis in Euglena.  相似文献   

3.
《Plant science》1986,45(1):9-17
Euglena gracilis is capable of forming the heme and chlorophyll precursor δ-aminolevulinic acid (ALA) by two routes: from glutamate via the five-carbon path in the chloroplasts, and by ALA synthase-mediated condensation of succinyl-CoA and glycine, probably in the mitochondrion. 5-Amino-1,3-cyclohexadienyl carboxylic acid (gabaculine), a powerful inhibitor of ALA formation via the five-carbon path, was administered to E. gracilis Klebs strain Z Pringsheim cells growing in the light or dark, and its effects on growth, chlorophyll accumulation and extractable ALA synthase activity were measured. Gabaculine had no effect in vitro on ALA synthase or ALA dehydratase, even at 100 μM. Administration of 100 μM gabaculine to wild-type cells growing in the light slowed growth, inhibited chlorophyll accumulation, and induced an increase in extractable ALA synthase activity. Chlorophyll accumulation in the light was abolished by prior administration of the compound to growing cells for 6 h in the dark, whereas chlorophyll accumulation in cells without gabaculine began immediately after transfer to light. Extractable ALA synthase activity from gabaculine-pretreated dark-grown cells was initially lower than the activity from untreated cells, but it did not undergo a further decline after transfer of the cells to the light, whereas the activity from untreated cells dropped to less than one eighth the dark level after 2 h in the light, and by 4 h had fallen to a level five times lower than that extractable from gabaculine-treated cells. These results suggest that suppression of ALA synthase activity by light in untreated cells is related to light-induced activation of the five-carbon ALA biosynthetic pathway in the plastids, and may result from a contribution by a product of the five-carbon pathway to non-plastid tetrapyrrole pools in the light.  相似文献   

4.
delta-Aminolevulinic acid (ALA), the first committed precursor to the tetrapyrrole components of hemes and chlorophylls, is synthesized by two different routes in the photosynthetic phytoflagellate Euglena gracilis: directly from glutamate, mediated by a 5-carbon pathway, and via condensation of glycine and succinyl-CoA, catalyzed by the enzyme ALA synthase. The physiological roles of the two pathways were determined by administration of specifically 14C-labeled ALA precursors to cultures growing under different physiological conditions. Relative activities of the ALA synthase and 5-carbon pathways were monitored by incorporation of radioactivity from [2-14C] glycine and [1-14C]glutamate into highly purified protoheme, heme a and chlorophyll a derivatives. Wild type cells grown photoautotrophically or photoheterotrophically synthesized chlorophyll and incorporated radioactivity from [1-14C]glutamate into the tetrapyrrole nucleus of the pigment. [2-14C]Glycine was incorporated primarily into the nontetrapyrrole-derived portions of chlorophyll. In the same cultures both [2-14C]glycine and [1-14C]glutamate were efficiently incorporated into protoheme, while only [2-14C] glycine was incorporated into heme a. In dark-grown wild type or light-grown aplastidic cells, no chlorophyll was formed, and both protoheme and heme a were labeled exclusively from [2-14C]glycine. These results indicate: (a) ALA synthase and the 5-carbon pathway operate simultaneously in growing green cells; (b) the 5-carbon pathway provides ALA for chloroplast protoheme and chlorophyll, and is associated with chloroplast development; (c) ALA synthase provides ALA only for nonplastid heme biosynthesis; and (d) the two ALA pathways are separately compartmentalized along with complete sets of enzymes for subsequent tetrapyrrole synthesis from each ALA pool. The protoheme that was synthesized from [1-14C] glutamate had a higher specific radioactivity than chlorophyll synthesized from the same precursor. This result together with calculated specific radioactivities of the products synthesized during the incubation period, suggest that both protoheme and heme a undergo metabolic turnover.  相似文献   

5.
Glutamate was converted to the chlorophyll and heme precursor delta-aminolevulinic acid in soluble extracts of Euglena gracilis. delta-Aminolevulinic acid-forming activity depended on the presence of native enzyme, glutamate, ATP, Mg2+, NADPH or NADH, and RNA. The requirement for reduced pyridine nucleotide was observed only if, prior to incubation, the enzyme extract was filtered through activated carbon to remove firmly bound reductant. Dithiothreitol was also required for activity after carbon treatment. delta-Aminolevulinic acid formation was stimulated by RNA from various plant tissues and algal cells, including greening barley leaves and members of the algal groups Chlorophyta (Chlorella vulgaris, Chlamydomonas reinhardtii), Rhodophyta (Cyanidium caldarium), Cyanophyta (Anacystis nidulans, Synechocystis sp. PCC 6803), and Prochlorophyta (Prochlorothrix hollandica), but not by RNA derived from Escherichia coli, yeast, wheat germ, bovine liver, and Methanobacterium thermoautotrophicum. E. coli glutamate-specific tRNA was inhibitory. Several of the RNAs that did not stimulate delta-aminolevulinic acid formation nevertheless became acylated when incubated with glutamate in the presence of Euglena enzyme extract. RNA extracted from nongreen dark-grown wild-type Euglena cells was about half as stimulatory as that from chlorophyllous light-grown cells, and RNA from aplastidic mutant cells stimulated only slightly. delta-Aminolevulinic acid-forming enzyme activity was present in extracts of light-grown wild-type cells, but undetectable in extracts of aplastidic mutant and dark-grown wild-type cells. Gabaculine inhibited delta-aminolevulinic acid formation at submicromolar concentration. Heme inhibited 50% at 25 microM, but protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide inhibited only slightly at this concentration.  相似文献   

6.
Two biosynthetic routes to the heme, chlorophyll, and phycobilin precursor, δ-aminolevulinic acid (ALA) are known: conversion of the intact five-carbon skeleton of glutamate, and ALA synthase-catalyzed condensation of glycine plus succinyl-coenzyme A. The existence and physiological roles of the two pathways in Cyanidium caldarium were assessed in vivo by determining the relative abilities of [2-14C]glycine and [1-14C]glutamate to label protoheme and heme a. Glutamate was incorporated to a much greater extent than glycine into both protoheme and heme a, even in cells that were unable to form chlorophyll and phycobilins. The small incorporation of glycine could be accounted for by transfer of label to intracellular glutamate pools, as determined from amino acid analysis. It thus appears that C. caldarium makes all tetrapyrroles, including mitochondrial hemes, solely from glutamate, and there is no contribution by ALA synthase in this organism.  相似文献   

7.
Physical and kinetic properties of δ-aminolevulinic acid synthase from wild-type and aplastidic strains of Euglena gracilis have been determined. Michaelis constants for glycine, succinyl-CoA and pyridoxal phosphate are 8.5 × 10?3m, 2.5 × 10?5m, and 2.9 × 10?6m, respectively. Optimum reaction pH is 7.8, and maximal product yield during a 30-min incubation occurs at 40 °C. Activity in frozen cell extracts remains constant for 5 days, then falls slowly to one-third of the initial value after 3 months. Enzyme activity rapidly declines irreversibly in the absence of pyridoxal phosphate. Agarose gel chromatography of the native enzyme yields a single band of activity at an elution volume corresponding to a molecular weight of 138,000. δ-Aminolevulinic acid synthase obtained from green wild-type strain Z cells is identical in its physical properties to that obtained from white aplastidic mutant strain W14 ZNalL cells.  相似文献   

8.
Mayer SM  Beale SI 《Plant physiology》1990,94(3):1365-1375
Chlorophyll synthesis in Euglena, as in higher plants, occurs only in the light. The key chlorophyll precursor, δ-aminolevulinic acid (ALA), is formed in Euglena, as in plants, from glutamate in a reaction sequence catalyzed by three enzymes and requiring tRNAGlu. ALA formation from glutamate occurs in extracts of light-grown Euglena cells, but activity is very low in dark-grown cell extracts. Cells grown in either red (650-700 nanometers) or blue (400-480 nanometers) light yielded in vitro activity, but neither red nor blue light alone induced activity as high as that induced by white light or red and blue light together, at equal total fluence rates. Levels of the individual enzymes and the required tRNA were measured in cell extracts of light- and dark-grown cells. tRNA capable of being charged with glutamate was approximately equally abundant in extracts of light- and dark-grown cells. tRNA capable of supporting ALA synthesis was approximately three times more abundant in extracts of light-grown cells than in dark-grown cell extracts. Total glutamyl-tRNA synthetase activity was nearly twice as high in extracts of light-grown cells as in dark-grown cell extracts. However, extracts of both light- and dark-grown cells were able to charge tRNAGlu isolated from light-grown cells to form glutamyl-tRNA that could function as substrate for ALA synthesis. Glutamyl-tRNA reductase, which catalyzes pyridine nucleotide-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde (GSA), was approximately fourfold greater in extracts of light-grown cells than in dark-grown cell extracts. GSA aminotransferase activity was detectable only in extracts of light-grown cells. These results indicate that both the tRNA and enzymes required for ALA synthesis from glutamate are regulated by light in Euglena. The results further suggest that ALA formation from glutamate in dark-grown Euglena cells may be limited by the absence of GSA aminotransferase activity.  相似文献   

9.
Formation of the chlorophyll and heme precursor δ-aminolevulinic acid (ALA) from glutamate in soluble extracts of Chlorella vulgaris, Euglena gracilis, and Cyanidium caldarium was stimulated by addition of low molecular weight RNA derived from greening algae or plant tissue. Enzyme extracts were prepared for the ALA formation assay by high-speed centrifugation, partial RNA depletion, and gel filtration through Sephadex G-25. RNA was extracted from greening barley epicotyls, greening cucumber cotyledon chloroplasts, and growing cells of Chlorella, Euglena, Chlamydomonas reinhardtii, and Anacystis nidulans, freed of protein, and fractionated on DEAE-cellulose to yield an active component corresponding to the tRNA-containing fraction. RNA from homologous and heterologous species stimulated ALA formation when added to enzyme extracts, and the degree of stimulation was proportional to the amount of RNA added. Algal enzyme extracts were stimulated by algal RNAs interchangeably, with the exception of RNA prepared from aplastidic Euglena, which did not stimulate ALA production. RNA from greening cucumber cotyledon chloroplasts and greening barley epicotyls stimulated ALA formation in algal enzyme incubations. In contrast, tRNA from Escherichia coli, both nonspecific and glutamate-specific, as well as wheat germ, bovine liver, and yeast tRNA, failed to reconstitute ALA formation. Moreover, E. coli tRNA inhibited ALA formation by algal extracts, both in the presence and absence of added algal RNA. Chlorella extracts were capable of catalyzing aminoacyl bond formation between glutamate and both the activity reconstituting and nonreconstituting RNAs, indicating that the inability of some RNAs to stimulate ALA formation was not due to their inability to serve as glutamyl acceptors. The first step in the ALA-forming reaction sequence has been proposed to be activation of glutamate via aminoacyl bond formation with a specific tRNA, analogous to the first step in peptide bond formation. Our results suggest that the RNA that is required for ALA formation may be functionally distinct from the glutamyl-tRNA species involved in protein synthesis.  相似文献   

10.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

11.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

12.
Beale SI  Chen NC 《Plant physiology》1983,71(2):263-268
The ability of N-methyl mesoporphyrin IX (NMMP) to block heme synthesis by specifically inhibiting enzymic iron insertion into protoporphyrin IX was exploited to test whether heme is a precursor of the bilin chromophore of phycocyanin (PC). A strain of the unicellular rhodophyte Cyanidium caldarium which forms normal amounts of both chlorophyll (Chl) and PC in the dark was employed to avoid phototoxic effects of exogenous porphyrins. Relative Chl and PC content were assayed spectrophotometrically on whole cell suspensions.

When cells were grown in the dark on a glucose-based heterotrophic medium at 42°C, neither division rate nor Chl synthesis was affected by NMMP up to 3.0 micromolar and for as long as 72 hours. NMMP had a dose-dependent inhibitory effect on PC synthesis. PC to Chl absorbance ratios, relative to control cell values, were 100%, 89%, 86%, and 50% in cells grown for 48 hours with 0.3, 1.0, 3.0, and 10.0 micromolar NMMP, respectively. NMMP also caused the accumulation of intracellular protoporphyrin.

The ability of NMMP to cause intracellular accumulation of protoporphyrin and to block PC synthesis specifically while allowing normal Chl formation is consistent with its action as a specific inhibitor of enzymic iron chelation, and supports the role of heme as a precursor to the phycobilins.

  相似文献   

13.
Bensen RJ  Warner HR 《Plant physiology》1987,84(4):1102-1106
A uracil-DNA glycosylase activity has been purified about 750-fold from the chloroplasts of light-grown Zea mays seedlings. This report represents the first direct demonstration of a DNA-glycosylase repair activity in chloroplasts. The activity, in part, was associated with a chloroplast Triton X-100 sensitive membrane. Its apparent Km was 1.0 micromolar for a poly(dA-dT/U) substrate, and its molecular weight, as determined by gel filtration, was 18,000. The enzyme exhibited optimal activity at pH 7.0 with an atypically narrow pH tolerance. Activity was inhibited greater than 60% by 10 millimolar NaCl, 5 millimolar MgCl2, or 5 millimolar EDTA. Enzyme activity was inhibited 80% by 10 millimolar N-ethylmaleimide, a sulfhydryl group-blocking agent. The activity removed uracil more rapidly from single-stranded DNA than from double-stranded DNA. With this report, uracil-DNA glycosylase activity has now been attributed to all three DNA-containing organelles of eucaryotic cells.  相似文献   

14.
Mayer SM  Beale SI 《Plant physiology》1991,97(3):1094-1102
Wild-type Euglena gracillis cells synthesize the key chlorophyll precursor, δ-aminolevulinic acid (ALA), from glutamate in their plastids. The synthesis requires transfer RNAGlu (tRNAGlu) and the three enzymes, glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde aminotransferase. Non-greening mutant Euglena strain W14ZNaIL does not synthesize ALA from glutamate and is devoid of the required tRNAGlu. Other cellular tRNAGlus present in the mutant cells were capable of being charged with glutamate, but the resulting glutamyl-tRNAs did not support ALA synthesis. Surprisingly, the mutant cells contain all three of the enzymes, and their cell extracts can convert glutamate to ALA when supplemented with tRNAGlu obtained from wild-type cells. Activity levels of the three enzymes were measured in extracts of cells grown under a number of light conditions. All three activities were diminished in extracts of cells grown in complete darkness, and full induction of activity required 72 hours of growth in the light. A light intensity of 4 microeinsteins per square meter per second was sufficient for full induction. Blue light was as effective as white light, but red light was ineffective, in inducing extractable enzyme activity above that of cells grown in complete darkness, indicating that the light control operates via the nonchloroplast blue light receptor in the mutant cells. Of the three enzyme activities, the one that is most acutely affected by light is glutamate-1-semialdehyde aminotransferase, as has been previously shown for wild-type Euglena cells. These results indicate that the enzymes required for ALA synthesis from glutamate are present in an active form in the nongreening mutant cells, even though they cannot participate in ALA formation in these cells because of the absence of the required tRNAGlu, and that the activity of all three enzymes is regulated by light. Because the absence of plastid tRNAGlu precludes the synthesis of proteins within the plastids, the three enzymes must be synthesized in the cytoplasm and their genes encoded in the nucleus in Euglena.  相似文献   

15.
The preparation of a rabbit antibody to ribulose-1,5-bisphosphate carboxylase (RuBPCase) from Euglena gracilis and its use to quantitate RuBPCase in dark- and light-grown cells and during light-induced chloroplast development (greening) are described. Light-grown Euglena have at least 36 times more RuBPCase than dark-grown Euglena. Light is required for both the initiation and continued increase in net synthesis of RuBPCase over the dark level: brief illumination 12 hours before exposure to continuous light eliminates the lags in the accumulation and increase in activity of RuBPCase (as well as in chlorophyll accumulation); net synthesis is blocked in greening cells returned to the dark or exposed to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Streptomycin or cycloheximide prevents RuBPCase accumulation when added at the beginning of greening but only partially blocks accumulation when added after 25 hours of greening. After 24 hours of greening, the activity of RuBPCase per milligram chlorophyll continues to increase slowly while concentration of the enzyme per milligram chlorophyll remains constant. This increased activity may be due to activation of the enzyme as well as to net synthesis.  相似文献   

16.
Formation of the heme precursor δ-aminolevulinic acid (ALA) was studied in soybean root nodules elicited by Bradyrhizobium japonicum. Glutamate-dependent ALA formation activity by soybean (Glycine max) in nodules was maximal at pH 6.5 to 7.0 and at 55 to 60°C. A low level of the plant activity was detected in uninfected roots and was 50-fold greater in nodules from 17-day-old plants; this apparent stimulation correlated with increases in both plant and bacterial hemes in nodules compared with the respective asymbiotic cells. The glutamate-dependent ALA formation activity was greatest in nodules from 17-day-old plants and decreased by about one-half in those from 38-day-old plants. Unlike the eukaryotic ALA formation activity, B. japonicum ALA synthase activity was not significantly different in nodules than in cultured cells, and the symbiotic activity was independent of nodule age. The lack of symbiotic induction of B. japonicum ALA synthase indicates either that ALA formation is not rate-limiting, or that ALA synthase is not the only source of ALA for bacterial heme synthesis in nodules. Plant cytosol from nodules catalyzed the formation of radiolabeled ALA from U-[14C]glutamate and 3,4-[3H]glutamate but not from 1-[14C]glutamate, and thus, operation of the C5 pathway could not be confirmed.  相似文献   

17.
The effect of Ni2+ on the early stages of chlorophyll biosynthesis and pheophytinization in Euglena gracilis cells was studied. Incubation of the cells with 10–4 M Ni2+ for 7 days resulted in a higher chlorophyll content, enhanced production of 5-aminolevulinic acid (ALA), and in increased activity of 5-aminolevuluinic acid dehydratase (EC 4.2.1.24, ALAD), as compared to the control cells incubated without Ni2+. At a higher concentration (10–3 M), Ni2+ markedly inhibited chlorophyll accumulation and ALAD activity, as compared to the control cells. At this concentration, Ni2+ also inhibited heme biosynthesis and strongly stimulated ALA production. It seems likely that, by affecting heme synthesis, Ni2+ increases the activity of the ALA production system. However, the suppression of subsequent stages of ALA conversion to chlorophyll, in particular ALAD inhibition, ultimately resulted in almost complete inhibition of chlorophyll biosynthesis. In addition to cessation of de novo chlorophyll synthesis in the presence of Ni2+ (10–3 M) in Euglena cells, the existing chlorophyll was converted into pheophytin and almost completely degraded. We suppose that the Ni2+-induced pheophytinization is caused by an acidic shift of intracellular pH related to an impairment of cell membrane permeability by Ni2+ cations.  相似文献   

18.
19.
J. R. Cook 《Biophysical journal》1972,12(11):1467-1473
Target numbers for ultraviolet (UV) inactivation of chloroplast replication in Euglena gracilis were about 45 when cells were grown in the dark and about 150 when grown in the light (700 or 1200 foot-candles [ft-cd]). Total cell DNA was about 25% greater in the light-grown cells.  相似文献   

20.
Methods are described which provide good recoveries of non-degraded chloroplast and non-chloroplast RNAs from Euglena gracilis var. bacillaris. These have been characterized by comparing the RNA from W3BUL (an aplastidic mutant of Euglena), with that of wild-type cells which have been resolved into chloroplast and non-chloroplast fractions. Using E. coli RNA as a standard, the RNAs from W3BUL and from the non-chloroplast fraction of green cells exhibit optical density peaks, upon sucrose gradient centrifugation, at 4S, 10S, and 19S. The chloroplast fraction exhibits optical density peaks at 19S and 14S with the 19S component predominating. Application of various techniques for the separation of RNAs to the problem of separating the chloroplast and non-chloroplast RNAs, without prior separation of the organelle, have not proven successful.

32Pi is readily incorporated into RNA by cells undergoing light-induced chloroplast development, and fractionation at the end of development reveals that although chloroplast RNAs have a higher specific activity, the other RNAs of the cells are significantly labeled as well. The succession of labeling patterns of total cellular RNA as light-induced chloroplast development proceeds are displayed and reveal that all RNA species mentioned above eventually become labeled. In contrast, cells kept in darkness during this period incorporate little 32Pi into any RNA fraction. In addition, a heavy RNA component, designated as 28S, while representing a negligible fraction of the total RNA, becomes significantly labeled during the first 24 hours of illumination. While there is light stimulated uptake of 32Pi into the cells, this uptake is never limiting in the light or dark, for RNA labeling.

On the basis of these findings, we suggest that extensive activation of non-chloroplast RNA labeling during chloroplast development is the result of the activation of the cellular synthetic machinery external to the chloroplast necessary to provide metabolic precursors for plastid development. Thus the plastid is viewed as an auxotrophic resident within the cell during development. Other possibilities for interaction at this and other levels are also discussed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号