首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial rate of [14C]uridine transport by guinea pig erythrocytes was investigated at different temperatures. At 37, 22, and 10 degrees C the concentration dependence of uridine zero-trans influx and equilibrium exchange influx was resolved into two components; (a) a saturable component which followed simple Michaelis-Menten kinetics and which was inhibited by nitrobenzylthioinosine, and (b) a linear component of low magnitude and insensitive to nitrobenzylthioinosine inhibition. The maximum velocity, Vmax, of zero-trans uridine influx for the saturable transport system was 70-fold higher at 37 than 10 degrees C (1.24, 0.20, and 0.018 mmol/L of cells per hour at 37, 22, and 10 degrees C, respectively). Similarly, the apparent affinity, Km, for zero-trans influx decreased as the temperature was lowered (0.27, 0.066, and 0.038 mM at 37, 22, and 10 degrees C, respectively). In contrast, uridine equilibrium exchange influx was less temperature dependent (Vmax, 2.80, 0.89, and 0.14 mmol/L of cells per hour; apparent Km 0.61, 0.36, and 0.24 mM at 37, 22, and 10 degrees C, respectively). These results demonstrate that the mobility of the empty carrier is impaired to a greater extent than the mobility of the loaded carrier temperature decreased. However, the kinetic constants for zero-trans uridine influx and efflux at 37 degrees C were similar, indicating that the nucleoside transporter exhibited directional symmetry at 37 degrees C. Arrhenius plots of the maximum velocity for equilibrium exchange and zero-trans uridine influx were discontinuous above 25 degrees C, but between 20 and 5 degrees C the plots were linear (Ea = 22 and 30 kcal/mol for equilibrium exchange and zero-trans influx, respectively.  相似文献   

2.
The kinetic properties of the carrier-mediated transport of 3,5,3'-triiodo-L-thyronine (T3) in washed rat erythrocytes were investigated (1) by studying the effects of trans unlabelled T3 on influx and efflux of labelled substrate and (2) by testing some predictions of the theory of Lieb and Stein [1974) Biochim. Biophys. Acta 373, 165-177). The carrier was trans-inhibited by T3 on both sides of the membrane. Under zero-trans conditions, the carrier displayed asymmetrical properties, the Michaelis constant and the maximal velocity being more than 6-times higher for influx than for efflux. Under equilibrium-exchange conditions, the Michaelis constant was lower than the zero-trans values, as expected when trans-inhibition occurs. This kinetic behaviour is consistent with a carrier which is accessible to T3 simultaneously from both sides of the erythrocyte membrane.  相似文献   

3.
The kinetic features of glucose transport in human erythrocytes have been the subject of many studies, but no model is consistent with both the kinetic observations and the characteristics of the purified transporter. In order to reevaluate some of the kinetic features, initial rate measurements were performed at 0 degree C. The following kinetic parameters were obtained for fresh blood: zero-trans efflux Km = 3.4 mM, Vmax = 5.5 mM/min; infinite-trans efflux Km = 8.7 mM, Vmax = 28 mM/min. For outdated blood, somewhat different parameters were obtained: zero-trans efflux Km = 2.7 mM, Vmax = 2.4 mM/min; infinite-trans efflux Km = 19 mM, Vmax = 23 mM/min. The Km values for fresh blood differ from the previously reported values of 16 mM and 3.4 mM for zero-trans and infinite-trans efflux, respectively (Baker, G.F. and Naftalin, R.J. (1979) Biochim. Biophys. Acta 550, 474-484). The use of 50 mM galactose rather than 100 mM glucose as the infinite-trans sugar produced no change in the infinite-trans efflux Km values but somewhat lower Vmax values. Simulations indicate that initial rates were closely approximated by the experimental conditions. The observed time courses of efflux are inconsistent with a model involving rate-limiting dissociation of glucose from hemoglobin (Naftalin, R.J., Smith, P.M. and Roselaar, S.E. (1985) Biochim. Biophys. Acta 820, 235-249). The results presented here support the adequacy of the carrier model to account for the kinetics.  相似文献   

4.
Formycin B, a C-nucleoside analog of inosine, is not catabolized by human erythrocytes and mouse P388 leukemia cells and is only very inefficiently phosphorylated in these cells. This relative inertness allows the measurement of its transport into and out of the cells uncomplicated by metabolic conversions. We have measured the zero-trans and equilibrium exchange flux of formycin B in these cells by rapid kinetic techniques. The Michaelis-Menten constants and maximum velocities for formycin B transport in both types of cell were similar to those previously reported for uridine and thymidine. Nevertheless, the differential mobility of the substrate-loaded and empty carrier of human erythrocytes was less for formycin B than uridine as substrate. Formycin B influx was inhibited by other nucleosides in accordance with their affinities for the carrier, but unaffected by purines. The inhibition of formycin B influx by nitrobenzylthioinosine and dipyridamole was also identical to that observed with uridine as substrate (IC50 = 10 and 30 nM, respectively). Formycin B accumulated in both types of cell to 30-40% higher concentrations than were present in the medium. This concentrative accumulation was not due to active transport, metabolism or partitioning into membrane lipids. It seems to reflect binding of formycin B to intracellular components, but does not interfere significantly with measurements of its transport.  相似文献   

5.
Kinetic characteristics of the transport of uridine, a non-metabolized permeant in human erythrocytes, have been compared in erythrocytes from fresh and outdated stored blood. Uridine transport kinetics in fresh cells conformed to the predictions of a simple carrier model operating with directional symmetry, but in erythrocytes from outdated blood the kinetic characteristics of uridine transport were those of an asymmetric system. The latter result agrees with earlier reports by others. The mobility of the loaded and empty carriers differed by about 6- and 12-fold in fresh and outdated blood, respectively.  相似文献   

6.
The transmembrane equilibration of [3H]uridine was measured in human erythrocytes as a function of temperature using rapid kinetic techniques. Arrhenius plots of the maximum velocity of equilibrium exchange were continuous between 5 and 30 degrees C (Ea = 17-20 kcal/mol), but the increase in velocity with increase in temperature leveled off above 30 degrees C. This leveling off did not reflect heat inactivation of the carrier since transport activity was stable for 3 h at 37 degrees C. Transmembrane equilibration of uridine in equilibrium exchange and zero-trans modes at 5, 15, 25, and 35 degrees C conformed to appropriate integrated rate equations derived for the simple transporter. The nucleoside transporter exhibited directional symmetry, but the loaded carrier moved on the average 5 times more rapidly than the empty carrier at 15, 25, and 35 degrees C, but 25-40 times faster at 5 degrees C. This marked shift in differential mobility of loaded and empty carrier between 15 and 5 degrees C was entirely attributable to an impairment of mobility of empty carrier. The Michaelis-Menten constant for equilibrium exchange increased about 3-fold with increase in temperature between 5 and 35 degrees C. The van't Hoff plot of the values was approximately linear and yielded an estimate of the enthalpy of carrier:substrate dissociation of 7.8 kcal/mol.  相似文献   

7.
Transport of adenine and hypoxanthine in human erythrocytes proceeds via two mechanisms: (1) a common carrier for both nucleobases and (2) unsaturable permeation 4-5-fold faster for adenine for hypoxanthine. The latter process was resistant to inactivation by diazotized sulfanilic acid. Carrier mediated transport of both substrates was investigated using zero-trans and equilibrium exchange protocols. Adenine displayed a much higher affinity for the carrier (Km approximately 5-8 microM) than hypoxanthine (Km approximately 90-120 microM) but maximum fluxes at 25 degrees C were generally 5-10-fold lower for adenine (Vmax approximately 0.6-1.4 pmol/microliters per s) than for hypoxanthine (Vmax approximately 9-11 pmol/microliters per s). The carrier behaved symmetrically with respect to influx and efflux for both substrates. Adenine, but not hypoxanthine reduced carrier mobility more than 10-fold. The mobility of the unloaded carrier, calculated from the kinetic data of either hypoxanthine or adenine transport, was the same thus providing further evidence that these substrates share a common transporter and that their membrane transport is adequately described by the alternating conformation model of carrier-mediated transport.  相似文献   

8.
Rapid kinetic techniques were used to measure the transport of uridine in pig erythrocytes in zero-trans entry and exit and equilibrium exchange protocols. The kinetic parameters were computed by fitting appropriate integrated rate equations to the time-courses of transmembrane equilibration of radiolabeled uridine. Transport of uridine conformed to the simple carrier model with directional symmetry, but differential mobility of substrate-loaded and empty carrier. At 5 degrees C, the carrier moved about 30-times faster when loaded than when empty. Uridine transport was inhibited in a concentration-dependent manner by nitrobenzylthioinosine and dipyridamole and the inhibition correlated with the binding of the inhibitors to high-affinity binding sites on the cells (Kd about 1 and 10 nM, respectively). Thus, in its kinetic properties, differential mobility when empty and loaded, and sensitivity to inhibition by nitrobenzylthioinosine and dipyridamole, the transporter of pig erythrocytes is very similar to that of human erythrocytes. Also, the total number of high-affinity binding sites for nitrobenzylthioinosine and dipyridamole/cell were similar for the two cell types and the [3H]nitrobenzylthioinosine-labeled carrier of pig erythrocytes, just as that of human red cells, was mainly recovered in the band 4.5 protein fraction of Triton X-100-solubilized membranes. However, sodium dodecylsulfate-polyacrylamide gel electrophoresis of photoaffinity-labeled band 4.5 membrane proteins indicated a slightly higher molecular weight for the transporter from pig than human erythrocytes. We have also confirmed the lack of functional sugar transport in erythrocytes from adult pigs by measuring the uptake of various radiolabeled sugars. But in spite of the lack of functional sugar transport we recovered as much band 4.5 protein from pig as from human erythrocyte membranes.  相似文献   

9.
Adenosine uptake, transport, and metabolism in human erythrocytes   总被引:2,自引:0,他引:2  
Using rapid kinetic techniques, we have determined the kinetics of zero-trans influx and equilibrium exchange of adenosine, and its uptake and in situ phosphorylation at 25 degrees C in human erythrocytes which were pretreated with 2'-deoxycoformycin to inhibit deamination of adenosine. Both the Km and Vmax for adenosine transport were about 300 times higher than those for the in situ phosphorylation of adenosine (Km about 0.2 microM), so that the first order rate constants for both processes were about the same. In contrast, the first order rate constant for adenosine deamination by untreated, intact cells was about 20% of that of adenosine transport or phosphorylation. These kinetic properties of the various steps, in combination with substrate inhibition of adenosine phosphorylation above 1 microM adenosine, assure that, at extracellular concentrations of physiological relevance (less than 1 microM), adenosine is very rapidly and efficiently salvaged by the erythrocytes and converted to ATP, whereas at extracellular concentrations of 10 microM or higher, practically all adenosine transported into the cells is deaminated. When the concentration of adenosine was 0.1 microM, a 10% (v/v) suspension of erythrocytes depleted the extracellular fluid of adenosine within 1 min of incubation at 25 degrees C.  相似文献   

10.
The kinetics of glucose transport in human red blood cells   总被引:5,自引:0,他引:5  
A quenched-flow apparatus and a newly developed automated syringe system have been used to measure initial rates of D-[14C]glucose transport into human red blood cells at temperatures ranging from 0 degrees to 53 degrees C. The Haldane relationship is found to be obeyed satisfactorily at both 0 and 20 degrees C, but Arrhenius plots of maximum D-[14C]glucose transport rates are non-linear under conditions of both equilibrium exchange and zero trans influx. Fitting of the data by non-linear regression to the conventional model for glucose transport gives values at 0 degrees C of 0.726 +/- 0.0498 s-1 and 12.1 +/- 0.98 s-1 for the rate constants governing outward and inward movements of the unloaded carrier molecule and 90.3 +/- 3.47 s-1 and 1113 +/- 494 s-1 for outward and inward movements of the carrier-glucose complex. Activation energies for these four rate constants are respectively 173 +/- 3.10, 127 +/- 4.78, 88.0 +/- 6.17 and 31.7 +/- 5.11 kJ X mol-1. These parameters indicate that at low temperatures the marked asymmetry of the transport mechanism arises mainly from the high proportion of inward-facing carriers and carrier-glucose complexes, and that there is a relatively small difference between the affinities of the carrier for glucose in the inward and outward-facing conformations. At high (physiological) temperatures the carrier is fairly evenly distributed between outward- and inward-facing conformations and the affinity for glucose is about 2.5-times greater outside than inside.  相似文献   

11.
The zero-trans uptake of purines and pyrimidines was measured in suspensions of Novikoff rat hepatoma, mouse L, P388 mouse leukemia, and Chinese hamster ovary cells by a rapid kinetic technique which allows the determination of uptake time points in intervals as short as 1.5 s. Kinetic parameters for purine/pyrimidine transport were determined by measuring substrate influx into cells in which substrate conversion to nucleotides was negligible either due to lack of the appropriate enzymes or to depletion of the cells of ATP (5'-phosphoribosylpyrophosphate), and by computer fitting exact, integrated rate equations derived for various carrier-mediated transport models directly to zero-trans influx data. The results indicate that different carriers function in the transport of hypoxanthine/guanine, adenine, and uracil with substrate:carrier association constants (K) at 24 degrees C of 300 to 400 muM, 2 to 3 mM, and about 14 mM, respectively, for Novikoff cells. K and Vmax for hypoxanthine transport by L and P388 cells are similar to those for Novikoff cells, but the transport capacity of Chinese hamster ovary cells is much lower and K = 1500 muM. All transport systems are completely symmetrical. Hypoxanthine transport is so rapid that an intracellular concentration of free hypoxanthine (90%) close to that in the medium is attained within 20 to 50 s of incubation at 24 degrees C, at least at extracellular concentrations below K. In cells in which conversion to nucleotides is not blocked free hypoxanthine accumulates intracellularly to steady state levels with equal rapidity and thereafter the rate of hypoxanthine uptake into total cell material is strictly a function of the rate of phosphoribosylation. The low Km systems for hypoxanthine (1 to 9 muM) and adenine (0.2 to 40 muM) uptake detected previously in many types of cells reflect the substrate saturation of the respective phosphoribosyltransferases rather than of the transport system.  相似文献   

12.
The glucose-permeable fetal red cells in the pig are entirely replaced by glucose-impermeable adult red cells within a month after birth. This study investigates the kinetic parameters of the glucose transport mechanism in newborn pig red cells in comparison with immature adult red cells (reticulocytes) as well as the fully matured adult erythrocytes. Influx and efflux of the nonmetabolizable 3-O-methyl glucose (3-O-M-G) in red cells of newborn pigs saturate at high substrate concentrations and exhibit typical Michaelis-Menten kinetics. Km values for efflux are 15.2 and 18.2 mM for 15 and 22 degrees C, respectively. Q10 computed between 10 and 26 degrees is 5.0. The energy of activation for the transport process is 34,000 cal mol-1. The effectiveness of hexoses in competing with 3-O-M-G in efflux is in the following order: D-glucose greater than D-mannose greater than D-fructose greater than D-galactose. Efflux of 3-O-M-G does not increase with 3-O-M-G or D-ribose in the medium and is reduced by 2,4-dinitroflurobenzene (DNFB), p-chloromercuriphenyl sufonic acid (PCMBS), and phloridzin. The reticulocytes are shown to possess a carrier-mediated transport but with a considerably lower transport rate. As the reticulocytes mature into normal red cells, the carrier transport mechanism is lost.  相似文献   

13.
The kinetics of hypoxanthine transport were measured in hypoxanthine phosphoribosyltransferase-deficient Novikoff cells by rapid kinetic techniques applying both zero-trans and equilibrium exchange protocols. The data indicate operation of a simple carrier with directional symmetry and equal mobility when substrate loaded and empty. Zero-trans influx and efflux were about equivalent and so were zero-trans influx and equilibrium exchange flux. The apparent Michaelis-Menten constant and maximum velocity were about 500 μM and 100 pmol/s per μl cell H2O, respectively. The time courses of accumulation of radioactively labeled hypoxanthine at a concentration above the Michaelis-Menten constant differed noticeably in zero-trans and equilibrium exchange mode, but computer simulations showed that the difference is predicted by the symmetrical carrier model and does not reflect trans-stimulation.  相似文献   

14.
Time courses of [3H]uridine uptake as a function of uridine concentration were determined at 25° in untreated and ATP-depleted wild-type and uridine kinase-deficient Novikoff cells and in mouse L and P388 cells, Chinese hamster ovary cells and human HeLa cells. Short term uptake was measured by a rapid sampling technique which allows sampling of cell suspensions in intervals as short as one and one-half seconds. The initial segments of the time courses were the same in untreated, wild-type cells in which uridine is rapidly phosphorylated and in cells in which uridine phosphorylation was prevented due to lack of ATP or uridine kinase. The initial rates of uptake, therefore, reflected the rate of uridine transport. Uridine uptake, however, was approximately linear for only five to ten seconds at uridine concentrations from 20–160 μM and somewhat longer at higher concentrations. In phosphorylating cells the rate of uridine uptake (at 80 μM) then decreased to about 20–30% of the initial rate and this rate was largely determined by the rate of phosphorylation rather than transport. At uridine concentrations below 1 μM, however, the rate of intracellular phosphorylation in Novikoff cells approached the transport rate. The apparent substrate saturation of phosphorylation suggests the presence of a low Km uridine phosphorylation system in these cells. The “zero-trans” (zt) Km for the facilitated transport of uridine as estimated from initial uptake rates fell between 50 and 240 μM for all cell lines examined. The zero-trans Vmax values were also similar for all the lines (4–15 pmoles/μ1 cell H2O.sec). The time courses of uridine uptake by CHO cells and the kinetic constants for transport were about the same whether the cells were propagated (and analyzed for uridine uptake) in suspension or monolayer culture. When Novikoff cells were preloaded with 10 μM uridine the apparent Km and Vmax values (infinite-trans) were two to three times higher than the corresponding zero-trans values. Uridine transport was inhibited in a simple competitive manner by several other ribo- and deoxyribonucleosides. All nucleosides seem to be transported by the same system, but with different efficiencies. Uridine transport was also inhibited by hypoxanthine, adenine, thymine, Persantin, papaverin, and o-nitrobenzylthioinosine, and by pretreatment of the cells with p-chloromercuri-benzoate, but not by high concentrations of cytosine, D-ribose or acronycin. The inhibition of uridine transport by Persantin involved changes in both V and K. Because of the rapidity of transport, some loss of intracellular uridine occurred when cells were rinsed in buffer solution to remove extracellular substrate, even at 0°. This loss was prevented by the presence of a transport inhibitor, Persantin, in the rinse fluid or by separating suspended cells from the medium by centrifugation through oil. Metabolic conversion of intracellular uridine were also found to continue during the rinse period. The extent of artifacts due to efflux and metabolism during rinsing increased with duration of the rinse.  相似文献   

15.
A Carruthers 《Biochemistry》1991,30(16):3898-3906
Two classes of theoretical mechanisms for protein-mediated, passive, transmembrane substrate transport (facilitated diffusion) are compared. The simple carrier describes a carrier protein that exposes substrate influx and efflux sites alternately but never both sites simultaneously. Two-site models for substrate transport describe carrier proteins containing influx and efflux sites simultaneously. Velocity equations describing transport by these mechanisms are derived. These equations take the same general form, being characterized by five experimental constants. Simple carrier-mediated transport is restricted to hyperbolic kinetics under all conditions. Two-site carrier-mediated transport may deviate from hyperbolic kinetics only under equilibrium exchange conditions. When both simple- and two-site carriers display hyperbolic kinetics under equilibrium exchange conditions, these models are indistinguishable by using steady-state transport data alone. Seven sugar transport systems are analyzed. Five of these systems are consistent with both models for sugar transport. Uridine, leucine, and cAMP transport by human red cells are consistent with both simple- and two-site models for transport. Human erythrocyte sugar transport can be modeled by simple- and two-site carrier mechanisms, allowing for compartmentalization of intracellular sugars. In this instance, resolution of the intrinsic properties of the human red cell sugar carrier at 20 degrees C requires the use of submillisecond transport measurements.  相似文献   

16.
T J Wheeler  J D Whelan 《Biochemistry》1988,27(5):1441-1450
It has been claimed that the Km for infinite-cis uptake of glucose in human erythrocytes is so low that the carrier model for transport must be rejected. We redetermined this parameter for three experimental conditions and found instead that the Km values were in good agreement with the model. For each of a variety of cis glucose concentrations, cells were preequilibrated with various concentrations of glucose, and the apparent Km was determined as the intracellular concentration reducing the initial rate of net uptake by half. The dependence of the apparent Km values on the cis glucose was as predicted by the carrier model; the infinite-cis Km was determined from both this concentration dependence and the extrapolated value at infinite cis glucose. The resulting values were 15 mM for fresh blood at 0 degrees C, 39 mM for outdated blood at 0 degrees C, and 11 mM for outdated blood at 25 degrees C. Previous measurements of the Km at room temperature yielded values of 2-3 mM. These earlier studies used a time course procedure that indicated rapid changes in rates during the initial 10 s of uptake but did not directly measure such changes. We examined the uptake of 60 mM glucose at 20 degrees C into cells containing 0 and 5 mM glucose; rapid changes in rates were not observed in the first few seconds, and the time courses were more consistent with our higher Km values. Our new values, together with other initial rate measurements in the literature, support the adequacy of the carrier model to account for the kinetics of glucose transport in human erythrocytes.  相似文献   

17.
1. Unidirectional influx of 42K was measured in red cells of grey squirrels at seasonal intervals over two years. 2. Na/K pump-related (i.e. ouabain-sensitive) K influx at 37 degrees C was maximal in cells collected in January and was more than three times greater than cells collected in summer. Na/K pump activity, maximized by loading the cells with Na, exhibited a similar difference. 3. At 5 degrees C in fresh cells, ouabain-sensitive K influx, expressed as per cent of that at 37 degrees C, was highest in March. In Na-loaded cells it was lowest in summer. 4. Passive "leak" K influx (i.e., the residual influx remaining in presence of ouabain and bumetanide) was highest in October, and declined progressively to the summer months, when it was only 27% of that in October. 5. Cotransport (i.e., bumetanide-sensitive K influx) exhibited the same seasonal pattern as Na/K pump activity in fresh cells. 6. Net gain of Na in cells stored at 5 degrees C for three days in March was less than half of that in January or summer. 7. High transport activity in January may correlate with a requirement for increased non-shivering thermogenesis. However, red cells of grey squirrels exhibit maximum resistance to low temperature in March and at this time resemble the red cells of hibernating mammals.  相似文献   

18.
19.
Na- and Cl-dependent glycine transport was investigated in human red blood cells. The effects of the carrier substrates (Na, Cl, and glycine) on the glycine transport kinetics were studied with the goal of learning more about the mechanism of transport. The K1/2-gly was 100 microM and the Vmax-gly was 109 mumol/kg Hb.h. When cis Na was lowered (50 mM) the K1/2-gly increased and the Vmax-gly decreased, which was consistent with a preferred order of rapid equilibrium loading of glycine before Na. Na-dependent glycine influx as a function of Na concentration was sigmoidal, and direct measurement of glycine and Na uptake indicated a stoichiometry of 2 Na:1 glycine transported. The sigmoidal response of glycine influx to Na concentration was best fit by a model with ordered binding of Na, the first Na with a high K1/2 (greater than 250 mM), and the second Na with a low K1/2 (less than 10.3 mM). In the presence of low Cl (cis and trans 5 mM), the K1/2-gly increased and the Vmax-gly increased. The Cl dependence displayed Michaelis-Menten kinetics with a K1/2-Cl of 9.5 mM. At low Cl (5 mM Cl balanced with NO3), the glycine influx as a function of Na showed the same stoichiometry and Vmax-Na but a decreased affinity of the carrier for Na. These data suggested that Cl binds to the carrier before Na. Experiments comparing influx and efflux rates of transport using red blood cell ghosts indicated a functional asymmetry of the transporter. Under the same gradient conditions, Na- and Cl-dependent glycine transport functioned in both directions across the membrane but rates of efflux were 50% greater than rates of influx. In addition, the presence of trans substrates modified influx and efflux differently. Trans glycine largely inhibited glycine efflux in the absence or presence of trans Na; trans Na largely inhibited glycine influx and this inhibition was partially reversed when trans glycine was also present. A model for the binding of these substrates to the outward-facing carrier is presented.  相似文献   

20.
Rapid kinetic techniques were employed to measure the transport of adenine in adenine phosphoribosyltransferase-deficient L929 and Chinese hamster ovary (CHO) cells in zero-trans entry and exit and equilibrium exchange procedures. The kinetic parameters of transport were computed by fitting appropriate integrated rate equations to time courses of transmembrane equilibration of radiolabeled adenine. Adenine transport conformed to the simple carrier model with directional symmetry and equal mobility of loaded and empty carrier. The Michaelis-Menten constants and maximum velocities for various strains of L929 cells fell between 2.3 and 3.5 mM and 90 and 150 pmol/microliters of cell water per s, respectively, values similar to those previously reported for CHO and Novikoff hepatoma cells. The corresponding values for hypoxanthine transport in L929 cells were 413 microM and 16 pmol/microliters of cell water per s. Adenine transport velocities were directly proportional to adenine concentrations between 0.03 and 50 microM in both CHO and Novikoff cells. The results indicate that adenine is transported in these cells by a single, low-affinity, high-capacity transporter. Adenine transport was inhibited by hypoxanthine in some cell strains, but not in others. Adenine also rapidly bound to L929 cells in a saturable manner (KD = 18 microM), presumably to the cell surface (about 3 X 10(7) sites per cell).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号