首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several species of migrant birds overlap in range on their wintering grounds with non-migrant conspecifics or other species that occupy a similar niche. Very little is known whether such overlap results in competition and subsequent habitat segregation since it is usually impossible to separate resident from migrant individuals. The Loggerhead Shrike (Lanius ludovicianus) is a declining grassland species in North America that winters in the southern United States and Mexico. Using stable-hydrogen isotope (δD) analysis of feathers, we identified resident and migrant shrikes wintering in northeastern Mexico based on a latitudinal gradient in precipitation and feather δD values. Indicator species analyses showed that migrants occupied areas where bare ground was less available than those occupied by residents, a pattern which held when a more restricted set of birds from the extremes of the δD distribution were considered. This provides evidence for conspecific habitat segregation. Habitat differences were also found between sites occupied by shrikes and apparently suitable but unoccupied sites. Shrikes occupied more open sites that contained shorter tall shrubs and huisache (Acacia farneasiana) and fewer tall shrubs, mesquite (Prosopsis glandulosa) and huisache than unoccupied sites. The availability of suitable winter habitat and the potential competition between migrants and residents may be factors that influence the population dynamics of migrant shrikes in North America.  相似文献   

2.
The Canadian Migration Monitoring Network consists of several fixed migration monitoring stations (MMS) that apply constant-effort protocols to track changes in the abundance of migratory birds. Such monitoring will be important for tracking long-term population trends of songbirds, especially for species breeding in remote areas such as the North American boreal forest. The geographical catchment sampled by individual MMS, however, remains largely unknown. Here, we used hydrogen isotope measurements (δD) of feathers of white-throated sparrows (Zonotrichia albicollis) moving through Delta Marsh MMS in Manitoba, Canada, to determine both wintering and breeding ground catchment areas monitored by this station. The δD of tail feathers, collected from spring and fall migrants delineated previous breeding or natal latitudes, ranging from the northern to the southern extremes of the western boreal forest. The δD values of head feathers grown on the wintering grounds and collected during spring migration revealed that individuals wintered in a broad region of the southeastern United States. The isotope data showed no relationship between estimated breeding/natal and wintering latitudes of white-throated sparrow populations. Stable isotope data provided little information on longitude. Band-encounter analyses, however, indicated a clear east–west segregation of these sparrows across Canada, supporting connectivity among breeding/natal and wintering longitudes over the entire scale of this species' range. Isotope analyses of multiple feather types representing different periods and geographic regions of the annual cycle can provide key information on migratory connectivity for species moving through dedicated MMS.  相似文献   

3.
 To determine whether stable isotopes can be used for identifying the geographic origins of migratory bird populations, we examined the isotopic composition of hydrogen (deuterium, δD), carbon (δ13C), and strontium (δ87Sr) in tissues of a migratory passerine, the black-throated blue warbler (Dendroica caerulescens), throughout its breeding range in eastern North America. δD and δ13C values in feathers, which are grown in the breeding area, varied systematically along a latitudinal gradient, being highest in samples from the southern end of the species’ breeding range in Georgia and lowest in southern Canada. In addition, δD decreased from east to west across the northern part of the breeding range, from New Brunswick to Michigan. δ87Sr ratios were highest in the Appalachian Mountains, and decreased towards the west. These patterns are consistent with geographical variation in the isotopic composition of the natural environment, i.e., with that of precipitation, plants, and soils for δD, δ13C, and δ87Sr, respectively. Preliminary analyses of the δD and δ13C composition of feathers collected from warblers in their Caribbean winter grounds indicate that these individuals were mostly from northern breeding populations. Furthermore, variances in isotope ratios in samples from local areas in winter tended to be larger than those in summer, suggesting that individuals from different breeding localities may mix in winter habitats. These isotope markers, therefore, have the potential for locating the breeding origins of migratory species on their winter areas, for quantifying the degree of mixing of breeding populations on migratory and wintering sites, and for documenting other aspects of the population structure migratory animals – information needed for studies of year-round ecology of these species as well as for their conservation. Combining information from several stable isotopes will help to increase the resolution for determining the geographic origins of individuals in such highly vagile populations. Received: 24 April 1995 / Accepted: 2 June 1996  相似文献   

4.
Understanding the population dynamics of migratory animals and predicting the consequences of environmental change requires knowing how populations are spatially connected between different periods of the annual cycle. We used stable isotopes to examine patterns of migratory connectivity across the range of the western sandpiper Calidris mauri. First, we developed a winter isotope basemap from stable‐hydrogen (δD), ‐carbon (δ13C), and ‐nitrogen (δ15N) isotopes of feathers grown in wintering areas. δD and δ15N values from wintering individuals varied with the latitude and longitude of capture location, while δ13C varied with longitude only. We then tested the ability of the basemap to assign known‐origin individuals. Sixty percent of wintering individuals were correctly assigned to their region of origin out of seven possible regions. Finally, we estimated the winter origins of breeding and migrant individuals and compared the resulting empirical distribution against the distribution that would be expected based on patterns of winter relative abundance. For breeding birds, the distribution of winter origins differed from expected only among males in the Yukon‐Kuskokwim (Y‐K) Delta and Nome, Alaska. Males in the Y‐K Delta originated overwhelmingly from western Mexico, while in Nome, there were fewer males from western North America and more from the Baja Peninsula than expected. An unexpectedly high proportion of migrants captured at a stopover site in the interior United States originated from eastern and southern wintering areas, while none originated from western North America. In general, we document substantial mixing between the breeding and wintering populations of both sexes, which will buffer the global population of western sandpipers from the effects of local habitat loss on both breeding and wintering grounds.  相似文献   

5.
Continent-wide variation in hydrogen isotopic composition of precipitation is incorporated into animal diets, providing an intrinsic marker of geographic location at the time of tissue growth. Feathers from migratory birds are now frequently analyzed for stable-hydrogen isotopes (δD) to estimate the location of individuals during a preceding molt. Using known-origin birds, we tested several assumptions associated with this emerging technique. We examined hydrogen isotopic variation as a function of age, sex, feather type and the timing of molt in a marked population of American redstarts (Setophaga ruticilla) breeding in southeastern Ontario. We measured δD in feathers and blood from individuals that bred or hatched at our study site during the year in which those tissues were grown. Juvenile tissues from 5- to 10-day-old birds had more negative δD values than those from adults, which most likely reflected age-related differences in diet. Within adults, primary feathers had more negative δD values than contour feathers. The mean δD value in adult primary feathers was relatively consistent among years and with the value expected for our study population. However, among-individual variation in δD corresponded to an estimated latitudinal range of 6–8° (650–900 km). We conclude that feathers sampled from recently hatched juveniles may not provide a reliable estimate of expected local isotopic signatures for comparison with adult feathers of unknown origin. Furthermore, we urge researchers to use caution when using δD values in feathers to infer geographic origin, and suggest that the best approach is to assign individuals to broad geographic zones within a species’ potential molting range.  相似文献   

6.
Stable carbon- (δ13C), nitrogen- (δ15N) and hydrogen (δD) isotope profiles in feathers of migratory Great Reed Warblers Acrocephalus arundinaceus recaptured for 2 or more years in 6 successive years were examined to test whether the isotope profiles of individual warblers appeared to be consistent between years. Similar isotopic signatures in successive years suggested that individual birds tended to return and grow their feathers in Afro-tropical wintering habitats that generate similar δ13C, δ15N and δD signatures. Previous studies have shown that Great Reed Warblers exhibit strong natal and breeding philopatry, with most of the surviving birds returning to the breeding site. The present study of feather δ13C, δ15N and δD isotopic values demonstrate the year-to-year fidelity might also include the African moulting sites in this migratory species.  相似文献   

7.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.  相似文献   

8.
Understanding the winter distributions of migrant birds is important because productivity and recruitment are influenced by conditions at several locations and periods in the life cycle of individuals. The western loggerhead shrike, Lanius ludovicianus excubitorides , is a threatened species in Canada, and its decline is attributed to potential limitations on the wintering grounds. We examined patterns of stable-hydrogen isotope (δD) distributions in feathers of loggerhead shrikes, primarily of L. l. excubitorides , during winter at three regions in north and central Mexico, to establish relative abundance and origins of migrants. We also investigated potential movements of Mexican winter resident individuals. Using shrike museum specimens of known summer provenance, a shrike deuterium base map for Mexico was developed from isotopic measurement of feathers of resident shrikes and use of a recently established feather base map for raptors in North America. Stable hydrogen isotope analyses of inner secondary feather (s9) of all loggerhead shrikes examined in Mexico during winter indicated that north-central (Region A), north-eastern (Region B) and south-central (Region C) sites in Mexico consisted of 28.1%, 73.7% and 63.8% of migrant individuals from northern breeding grounds, respectively. Isotopic evidence suggested movements of a few local residents birds (7.9%) into the Chihuahuan desert from south-western USA and north-eastern Mexico to winter.  相似文献   

9.
Molt is an energetically costly process, and songbirds (Order Passeriformes) exhibit a diversity of strategies to maximize their survival and reproductive success while meeting the energetic demands of the annual prebasic molt. Nearctic‐Neotropic migrants in western North America commonly exhibit one of three strategies: (1) remain in breeding areas to molt, (2) migrate long distances to molt before continuing to wintering areas, or (3) migrate to wintering areas and then molt. Among species that molt in or near breeding areas, the nature of small‐scale movements to undergo molt remains largely unknown. We used banding data collected over a period of 27 yr and across an elevational gradient to examine the propensity of Wilson's Warblers (Cardellina pusilla) to molt and breed at the same or different locations in northern California and southern Oregon. We found that individual adult Wilson's Warblers were more likely to breed at lower elevations and molt at higher elevations, suggesting that some individuals move altitudinally after breeding to complete the definitive prebasic molt. Such altitudinal movements may be more common among Nearctic‐Neotropic migrants in western North America than previously thought.  相似文献   

10.
Geographic origins of populations and migration patterns of several vertebrate and invertebrate species have been inferred from geographically distinct isotopes in their tissues. To test the hypothesis that feathers grown on different continents would reflect continental differences of δD in precipitation and have significantly different stable isotope ratios, we analyzed stable isotopes in two generations of feathers from three bird species (American and Pacific golden-plovers, Pluvialis dominica and P. fulva, and northern wheatears Oenanthe oenanthe) that breed in North America and winter in South America, the South Pacific and Asia, and Africa. We found significant differences in stable isotope signatures between summer- and winter-grown feathers in the plovers, and our use of two generations of feathers provided similar variation to that reported in studies using larger sample sizes. In contrast to plovers, no differences were detected in isotope values between summer- and winter-grown feathers in wheatears. Discriminant analyses separated 80% of summer- and winter-grown feathers for each plover species. Nonetheless, an “assignment with exclusion” method adapted from population genetics to impart a measure of confidence in assigning individuals to groups of origin resulted in an overall accuracy among plovers of only 41%, compared with a 63% assignment accuracy when the exclusion criterion was removed. Thus, we were unable to accurately assign feathers to origin of growth on the continental scale. Moreover, using δD expectations for North America, we were unable to assign summer-grown plover feathers to within better than several thousand kilometers of their true origins. We urge researchers to carefully consider the ecology and physiology of their study organisms, statistical methodology, and the interpretation of results when using stable isotopes to infer the geographic origins of feather growth.  相似文献   

11.
Lott CA  Meehan TD  Heath JA 《Oecologia》2003,134(4):505-510
Hydrogen stable isotope analysis of feathers is an important tool for estimating the natal or breeding latitudes of nearctic-neotropical migratory birds. This method is based on the latitudinal variation of hydrogen stable isotope ratios in precipitation in North America (deltaD(p)) and the inheritance of this variation in newly formed feathers (deltaD(f)). We hypothesized that the typically strong relationship between deltaD(p) and deltaD(f) would be decoupled in birds that forage in marine food webs because marine waters have relatively high deltaD values compared to deltaD values for local precipitation. Birds that forage on marine prey bases should also have feathers with high delta(34)S values, since delta(34)S values for marine sulfate are generally higher than delta(34)S values in terrestrial systems. To examine this potential marine effect on feather stable isotope ratios, we measured deltaD and delta(34)S in the feathers of nine different species of raptors from both inland and coastal locations across North America. Feathers from coastal bird-eating raptors had consistently higher deltaD and delta(34)S values than feathers from inland birds. Birds that had high delta(34)S values also deviated strongly from the typical relationship between deltaD(p) and deltaD(f). We recommend measuring both sulfur and hydrogen stable isotope ratios in feathers when some members of a migrant population could potentially forage in marine habitats. We suggest using a practical cutoff of delta(34)S >10 per thousand to remove marine-foraging birds from a migrant sample when using stable isotopes of hydrogen to estimate the latitudinal origins of migrants because high deltaD(f) values for marine-foraging birds could potentially distort estimates of origins.  相似文献   

12.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

13.
M. MÖNKKONEN  P. HELLE  D. WELSH 《Ibis》1992,134(S1):7-13
In this paper we compare ecological attributes of tropical migrant passerines from the Nearctic and western Palaearctic, focusing particularly on habitat association patterns during both breeding and wintering seasons. Three regions were compared: Europe, western and eastern North America. Breeding bird census data from 32 studies (each including at least four stages of forest succession) were used to assess the association patterns of breeding habitats among tropical migrants. For each species we calculated an index of habitat diversity and habitat preference.
Tropical migrants preferred earlier successional stages than other birds in Europe. The opposite was true in eastern North America. In eastern North America, tropical migrants tended to be associated with a smaller range of serai stages than other passerine species. In their winter quarters, Palaearctic migrants live primarily in open habitats, such as savannas, whereas eastern Nearctic migrants make more frequent use of evergreen forests. Migrants from western North America show the greatest match between breeding and wintering habitats.
We relate the results to the taxonomy and probable history of contemporary avifaunas and vegetation formations of the Old and New World. Taxonomically, tropical migrants from different parts of the Holarctic are less closely related to each other than residents and short-distance migrants. Tropical and temperate avifaunas are more closely related to each other in the New World than in the Old World. Conservation implications of the between-continent differences are briefly discussed.  相似文献   

14.
Each spring, millions of songbirds migrate across the Gulf of Mexico on their way to breeding sites in North America. Data from radar and migration monitoring stations have revealed broad patterns in the spatial and temporal course of trans-Gulf migration. Unfortunately, we have limited information on where these birds have previously spent the winter and where they are migrating to breed. Here we measure stable-hydrogen isotopes in feathers (δDf) to infer the breeding latitude of five species of songbirds – hooded warblers Wilsonia citrina , American redstarts Setophaga ruticilla , black-and-white warblers Mniotilta varia , ovenbirds Seiurus aurocapilla , and northern waterthrushes S. noveboracensis – that were captured at a stopover site along the coast of southwestern Louisiana in spring 2004. Values of δDf across all species ranged from −163 to −35‰ (n=212), and within most species the range was consistent with the latitudinal extent of known breeding sites in central and eastern North America. Individuals that arrived first along the northern Gulf coast had δDf values indicative of southerly breeding sites in hooded warblers, American redstarts, black-and-white warblers, and ovenbirds, but no relationship was found between passage timing and δDf for northern waterthrushes. Our findings suggest that spring passage is often timed to coincide with the emergence of suitable conditions on breeding areas, with southern breeding birds migrating first.  相似文献   

15.
To investigate migratory connectivity in the Reed Warbler Acrocephalus scirpaceus, we analysed (1) all available sub-Saharan ringing recoveries and (2) stable isotopes in feathers grown in Africa sampled at 17 European breeding sites across a migratory divide. A cluster analysis of ringing recoveries showed remarkable connectivity between breeding and non-breeding grounds. Two main clusters represented populations taking the two main migratory routes [southwesterly (SW) and southeasterly (SE)]. Stable isotope analysis confirmed the separation of wintering areas of SW- and SE-migrating populations. Higher δ15N values in feathers of SE-migrating birds indicated that they occupied more xeric biome types. Values of δ13C that did not differ significantly among populations were higher than those from feathers of known European origin and indicated a C4 biome. Three populations with an unknown migratory direction were assigned to the SE-migrating populations on the basis of δ15N values.  相似文献   

16.
Analyses of the stable isotope composition of feathers can provide significant insight into the spatial structure of bird migration. We collected feathers from Great Reed Warblers Acrocephalus arundinaceus, Clamorous Reed Warblers A. stentoreus and a small sample of their hybrids in a sympatric breeding population in Kazakhstan to assess natural variation in stable isotope signatures and delineate wintering sites. The Great Reed Warbler is a long‐distance migrant that overwinters in sub‐Saharan Africa, whereas the Clamorous Reed Warbler performs a short‐distance migration to the Indian sub‐continent. Carbon (δ13C), nitrogen (δ15N) and deuterium (δD) isotope signatures were obtained from winter‐grown feathers of adult birds. There were highly significant differences in δD and less significant differences in δ13C between Great and Clamorous Reed Warblers. Thus, our results show that the stable isotope technique, and in particular the deuterium (δD) signal, resolves continental variation in winter distribution between these closely related Acrocephalus species with sympatric natal origin. The isotope signatures of hybrid Great × Clamorous Reed Warblers clustered with those of the Great Reed Warblers. Hence, a parsimonious suggestion is that the hybrids undergo moult in Afrotropical wintering grounds, as do the Great Reed Warblers. The observed δD values fell within the range of expected values based on available precipitation data collected at precipitation stations across the wintering continents of each species. However, the power to predict the winter origin of birds in our study system using these data was weak as the expected values ranged widely at this broad continental scale.  相似文献   

17.
The breeding grounds of migrant generation monarch butterflies in eastern North America are well known. In stark contrast the location of natal grounds of western migrants has not been delineated. We show that 55% of the area within seven western states was potential breeding range based on: (1) the occurrence of milkweed host plant species with phenology making them available during late-summer and (2) regional thermal conditions supportive of adult reproductive activity and development of immature stages. We next used a series of spatially explicit “bottom-up” regression models to test this first-approximation natal origins distribution. We tested for associations between variation in moisture availability at putative natal habitat and inter-annual variation in monarch abundance at western wintering sites for a 10 year period (1998–2007). Variation in moisture availability, as measured by Palmer’s drought severity index (PDSI), across the western region predicted monarch abundance patterns. In contrast and as expected, PDSI across known eastern breeding grounds did not predict variation in western monarch migrant abundance. The pattern of moisture availability was not uniform between states or within states and permitted similar tests of association at a finer geographical level. PDSI for California, Idaho, Nevada, and Oregon (but not Arizona, Utah, or Washington) were each significantly associated with monarch wintering abundance patterns with California exhibiting the strongest relationship. At a more focused spatial scale we tested the local recruitment hypothesis. This is the notion that western coastal wintering monarch populations derive only from nearby coastal breeding habitat and that monarchs do not migrate from more distant natal grounds. Variation in moisture availability within a block of three contiguous central California climate divisions (Sacramento Drainage, San Joaquin Drainage, and Southeast Desert Basin) significantly predicted inter-annual abundance of migrant generation monarchs. In contrast PDSI patterns of three coastal California climate divisions, i.e., ones local to wintering sites, as well as that of climate divisions in western Nevada and Arizona did not predict variation in monarch abundance at this more focused spatial resolution. Our findings suggest that moisture regimes act as a strong bottom-up driver of monarch abundance pattern via resource availability in western USA.  相似文献   

18.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   

19.
Linking isotopic and migratory patterns in a pelagic seabird   总被引:1,自引:0,他引:1  
The value of stable isotope analysis in tracking animal migrations in marine environments is poorly understood, mainly due to insufficient knowledge of isotopic integration into animal tissues within distinct water masses. We investigated isotopic and moult patterns in Cory’s shearwaters to assess the integration of different stable isotopes into feathers in relation to the birds’ transoceanic movements. Specimens of Mediterranean Cory’s shearwater Calonectris diomedea diomedea caught accidentally by Catalan longliners were collected and the signatures of stable isotopes of C (δ13C), N (δ15N) and S (δ34S) were analysed in 11 wing and two tail feathers from 20 birds, and in some breast feathers. Based on isotopic signatures and moult patterns, the feathers segregated into two groups (breeding and wintering), corresponding to those grown in the Mediterranean or Atlantic regions, respectively. In addition, feathers grown during winter, i.e. moulted in Atlantic waters, were grouped into two isotopically distinct profiles, presumably corresponding to the two main wintering areas previously identified for Mediterranean Cory’s shearwater in tracking studies. N signatures mainly indicated the Mediterranean-to-Atlantic migration, whereas C and S signatures differed according to the Atlantic wintering area. Our results indicate that isotopic signatures from distant oceanic regions can integrate the feathers of a given bird and can indicate the region in which each feather was grown. This study thus underscores how stable isotope analysis can link marine animals to specific breeding and wintering areas, and thereby shed new light on studies involving assignment, migratory connectivity and carry-over effects in the marine environment. Xavier Ruiz deceased 27 April 2008.  相似文献   

20.
Tracing origins and migration of wildlife using stable isotopes: a review   总被引:30,自引:0,他引:30  
Keith A. Hobson 《Oecologia》1999,120(3):314-326
To understand the ecology of migratory animals it is important to link geographic regions used by individuals including breeding, wintering, and intermediate stopover sites. Previous conventional approaches used to track animal movements have relied on extrinsic markers and typically the subsequent recovery of individuals. This approach has generally been inappropriate for most small, or non-game animals. The use of intrinsic markers such as fatty acid profiles, molecular DNA analyses, and the measurement of naturally occurring stable isotopes in animal tissues offer alternative approaches. This paper reviews the use of stable isotope analyses (primarily δ13C, δ15N, δ34S, δD, δ87Sr) to trace nutritional origin and migration in animals. This approach relies on the fact that foodweb isotopic signatures are reflected in the tissues of organisms and that such signatures can vary spatially based on a variety of biogeochemical processes. Organisms moving between isotopically distinct foodwebs can carry with them information on the location of previous feeding. Such an approach has been used to track animal use of inshore versus offshore, marine versus freshwater, terrestrial C3 versus marine, terrestrial mesic versus xeric, and C3 versus C4 or Crassulacean acid metabolism foodwebs. More recently, the use of stable hydrogen isotope analyses (δD) to link organisms to broad geographic origin in North America is based on large-scale isotopic contours of growing-season average δD values in precipitation. This technique, especially when combined with the assay of other stable isotopes, will be extremely useful in helping to track migration and movement of a wide range of animals from insects to birds and mammals. Future research to refine our understanding of natural and anthropogenic-induced isotopic gradients in nature, and to explore the use of stable isotopes of other elements, is recommended. Received: 1 July 1998 / Accepted: 9 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号