首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil NADPH oxidase (O2 generating enzyme) activated in a cell-free system was deactivated by dilution. When ATP was included in dilution the deactivation was further accelerated. The deactivation by dilution was biphasic, and the half-life of the enzyme was significantly shortened by ATP in each phase. ADP and AMP had little effect on the enzyme longevity while GTP and CTP had a similar effect to ATP. Staurosporine, a wide-range inhibitor of protein kinases, had no effect on ATP-induced deactivation, suggesting that the effect was not due to a protein phosphorylation. Mg2+ addition largely prevented the deactivation by ATP. Chemical crosslinking of the activated oxidase prevented the deactivation by dilution and ATP, suggesting that the deactivation is caused by dissociation of the oxidase complex. Estimation of actin filament (F-actin) showed that the F-actin level was markedly reduced by addition of ATP. The ATP effect on the deactivation was not prominent in a semi-recombinant system which does not contain cytosol. These results suggest that ATP-induced deactivation is largely due to the chelation of Mg2+ and are consistent with the concept that Mg2+ stabilizes the oxidase complex by stabilizing F-actin.  相似文献   

2.
Branson JP  Attwood PV 《Biochemistry》2000,39(25):7480-7491
The effects of Mg(2+) concentration on the kinetics of both ATP cleavage and carboxyenzyme formation in the approach to steady state of the biotin carboxylation reaction of pyruvate carboxylase have been studied. It was found that the enzyme underwent dilution inactivation at low Mg(2+) concentrations and that this occurred at higher enzyme concentrations than had been previously observed. At 10 mM Mg(2+), dilution inactivation was prevented and activation of the enzyme also occurred. When the enzyme was mixed with an ATP solution to initiate the carboxylation reaction, dilution inactivation was reversed and further enzyme activation was induced to a final level that was dependent on Mg(2+) concentration. With the exception of the reaction at 10 mM Mg(2+) in the presence of acetyl CoA, the experimental data could be adequately described as first-order exponential approaches to steady state. At 10 mM Mg(2+) in the presence of acetyl CoA, both ATP cleavage and carboxyenzyme formation data were best described as a biexponential process, in which there was little ATP turnover at steady state. Modeling studies have been performed which produced simulated data that were similar to the experimental data, using a reaction scheme modified from one proposed previously [Legge, G. B., et al. (1996) Biochemistry 35, 3849-3856]. These studies indicate that the major foci of action of Mg(2+) are in the decarboxylation of the enzyme-carboxybiotin complex, the return of the biotin to the site of the biotin carboxylation reaction, and the coupling of ATP cleavage to biotin carboxylation.  相似文献   

3.
A Mg2+-induced change of the (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from Electrophorus electricus was investigated by kinetics and fluorescence techniques. Binding of Mg2+ to a low affinity site(s) caused inhibition of (Na+,K+)-ATPase activity, an effect which was antagonized by both Na+ and ATP. Mg2+ also caused inhibition of K+-dependent dephosphorylation of the enzyme without inhibiting either (Na+)-ATPase activity or Na+-dependent phosphorylation. Mg2+ also induced a 5 to 6% enhancement in the fluorescence intensity of enzyme labeled with the fluorescent sulfhydryl reagent, 2-(4-maleimidylanilino)naphthalene-6-sulfonate. As in the case of Mg2+ inhibition of activity, the affinity for Mg2+ as an inducing agent for this effect was significantly reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced in magnitude by ouabain and prevented by oligomycin, specific inhibitors of the enzyme. In addition, K+ (and cations that substitute for K+ in supporting activity) induced a 3 to 4% enhancement in fluorescence intensity in the presence of Na+, Mg2+, and ATP, although the K+ and Mg2+ effects appeared to be different on the basis of their excitation spectra. The K+ effect was inhibited by ouabain and occurred with a rate greater than the rate of turnover of the enzyme, permitting its involvement in the catalytic cycle.  相似文献   

4.
The photochemical release of Ca2+ from caged-Ca2+ in the absence of ATP, and the release of ATP from caged-ATP in the presence of Ca2+ induce characteristic difference FTIR spectra on rabbit sarcoplasmic reticulum that are related to the formation of Ca2-E1 and E approximately P intermediates of the Ca(2+)-ATPase, respectively. Dicyclohexylcarbodiimide (10 nmol/mg protein) abolished both the Ca(2+)-and ATP-induced difference FTIR spectra parallel with inhibition of ATPase activity. Cyclopiazonic acid (50 nmol/mg protein) inhibited the Ca(2+)-induced difference spectrum measured in the absence of ATP, but had no significant effect on the ATP-induced difference spectrum measured in the presence of 1 mM Ca2+. The dog kidney Na+,K(+)-ATPase did not give significant difference spectrum after photolysis of caged-ATP in Ca(2+)-free media containing 90 mM Na+ and 10 mM K+, with or without ouabain. We propose that both the Ca2+ and the ATP-induced difference FTIR spectra of the Ca(2+)-ATPase reflect the occupancy of the high-affinity Ca2+ transport site of the enzyme.  相似文献   

5.
F Nakamura  M Naka  T Tanaka 《FEBS letters》1992,314(1):93-96
Ruthenium red was found to inhibit actin-activated myosin Mg(2+)-ATPase in smooth muscle and to bind to myosin heavy chain, but not to F-actin. The inhibition by Ruthenium red of actin-activated Mg(2+)-ATPase was of the competitive type with respect to actin (Ki 4.4 microM) and of the non-competitive type with respect to ATP (Ki 6.6 microM). However, Ruthenium red scarcely dissociated the acto-heavy meromyosin complex during the ATPase reaction. These results suggest that Ruthenium red interacts directly with the binding site for F-actin on the myosin heavy chain. This site is considered to be necessary not for maintaining the binding affinity of myosin for F-actin, but for activation of the Mg(2+)-ATPase.  相似文献   

6.
Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca2+ uptake cannot be attributed solely to the inhibition of anion transport: (Ca(2+)+Mg2+)ATPase and ATP-dependent Ca2+ transport, respectively. The rate constant of EGTA-induced Ca2+ efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca2+. In the presence of DIDS, the effects of the physiological ligands Ca2+, Mg2+, and ATP on (Ca(2+)+Mg2+)ATPase activity were modified. The Ca2+ concentration that inhibited (Ca(2+)+Mg2+)ATPase activity in the low-affinity range decreased from 91 to 40 microM, but DIDS had no effect on the Km for Ca2+ in the high-affinity, stimulatory range. Free Mg2+ activated (Ca(2+)+Mg2+)ATPase activity at a low Ca2+ concentration, and DIDS impaired this stimulation in a noncompetitive fashion. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E2----E1 transition, and leading to a decrease in the proportion of E2 forms under steady-state conditions. Alkaline pH totally abolished the inhibition of the (Ca(2+)+Mg2+)ATPase activity by DIDS, with a half-maximal effect at pH 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The 13S coupling factor of oxidative phosphorylation from Alcaligenes faecalis has a latent adenosine triphosphatase (ATPase) function that can be activated by heating at 55 degrees C for 10 min at pH 8.5 in 50% glycerol. The specific activity increases from 0.1 to 20--30 mumol min-1 mg-1. Adenosine 5'-triphosphate (ATP) is not required for stabilization at 55 degreesC when glycerol is present. Activation involves displacement of the endogenous ATPase inhibitor subunit (epsilon subunit), and readdition of this subunit results in deactivation. In the deactivation process the ATPase inhibitor subunit can be replaced by other cationic proteins such as protamine, histones, or poly(lysine). Mg2+ and H+ also are effective deactivators. The fact that every positively charged substance tested deactivated the enzyme suggests that the inhibitor subunit is complexed with the enzyme at a site containing a surplus of negative charges. The activated enzyme is not labile, but it is salt labile, having a half-life of 2-3 min in 0.1 M KI at either 25 or 0 degrees C. The activated ATPase is also inhibited by aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD), and by the cross-linking agent dimethyl suberimidate. Evidence for polymorphism comes from finding that the properties of the unactivated enzyme (intrinsic ATPase) are different in many ways from the properties of activated ATPase. With respect to the coupling factor's ability to hydrolyze ATP, the data in this study suggest that there are at least four distinct functional allomorphs of this enzyme: (1) the latent enzyme, which has no kinetically measurable ATPase activity, (2) intrinsic ATPase, which is catalyzed by a small percentage of the molecular population that has been activated by some natural mechanism, (3) activated ATPase, which has properties different from those of intrinsic ATPase, and (4) aged activated ATPase, in which some of the properties (Km for substrate, sensitivity to deactivation by Mg2+ and H+) spontaneously change within 30 min.  相似文献   

8.
In previous studies we had demonstrated that in the presence of 0.25 mM Cu2+ and 1.25 mM o-phenanthroline, cross-linking of the alpha-subunits of Na+ + K+)-dependent adenosine triphosphatase was induced by the addition of Na+ + ATP, and that the formation of the alpha,alpha-dimer was preceded by that of phosphoenzyme. The purpose of the present studies was the further evaluation of the role of phosphoenzyme in the process of cross-linking. Na+ + UTP did not induce cross-linking unless Mg2+ was also added. In contrast, Na+ + ATP-induced cross-linking did not require the addition of Mg2+. The different effects of ATP and UTP in the absence of added Mg2+ could be accounted for by the presence in the enzyme preparation of bound Mg2+ which supported enzyme phosphorylation by ATP but not by UTP. When the enzyme was phosphorylated by Pi, in the presence of Mg2 and ouabain, and the exposed to Cu2+ and o-phenanthroline, the alpha,alpha-dimer was obtained. Under these conditions, Na+ blocked both phosphorylation and cross-linking. These results indicate that it is the formation of phosphoenzyme per se that leads to conformational transitions favorable to cross-linking. They also suggest that Cu2+ and o-phenanthroline participate in the cross-linking reaction, but not in the phosphorylation reactions. In the digitonin-treated enzyme, Na+ and ATP induced the formation of phosphoenzyme, but not that of alpha,alpha-dimer. These findings indicate that in addition to phosphorylation, a proper orientation o alpha-subunits in an oligomer is also necessary for cross-linking.  相似文献   

9.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

10.
1. The rate of fatty acid synthesis by particle-free extracts prepared from rat liver is increased greatly if the enzyme system is first activated with citrate. 2. The extent of the activation depends on the citrate concentration and on the time of activation in an interdependent manner. 3. Citrate activation is strongly dependent on temperature. 4. Tricarballylate can replace citrate as an activator, but its presence in the assay inhibits fatty acid synthesis. 5. Mg(2+) ions can replace citrate in the activation but not in the complete reaction system. 6. ATP prevents the activating effect of citrate and Mg(2+) ions. 7. The rate of fatty acid synthesis is increased by palmitoyl-dl-carnitine. This type of activation, additional to that caused by citrate, is rapid and does not depend on prior incubation. 8. Inhibition of fatty acid synthesis by palmitoyl-CoA can be prevented by palmitoyl-dl-carnitine or by increasing the concentration of protein.  相似文献   

11.
The volume-sensitive outwardly rectifying (VSOR) anion channel provides a major pathway for anion transport during cell volume regulation. It is typically activated in response to cell swelling, but how the channel senses the swelling remains unclear. Meanwhile, we recently found that in mouse astrocytes the channel is activated by an inflammatory chemical mediator, bradykinin, without cell swelling and that the activation is regulated via high concentration regions of intracellular Ca(2+) ([Ca(2+)](i)) in the immediate vicinity of open Ca(2+)-permeable channels, so-called Ca(2+) nanodomains. Here we investigated whether a similar mechanism is involved in the swelling-induced VSOR channel activation in the astrocytes. A hypotonic stimulus (25% reduction in osmolality) caused the [Ca(2+)](i) rises in the astrocytes, and the rises were abolished in the presence of an ATP-degrading enzyme, apyrase (10 U/ml). Application of ATP (100 μM) under isotonic conditions generated the current through VSOR channels via Ca(2+) nanodomains, as bradykinin does. The current induced by the hypotonic stimulus was suppressed by ~40% in the Ca(2+)-depleted condition where the ATP-induced VSOR current was totally prevented. Thus the swelling-induced VSOR channel activation in mouse astrocytes is partly regulated via Ca(2+) nanodomains, whose generation is triggered by an autocrine action of ATP.  相似文献   

12.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

13.
The interplay of inorganic phosphate (Pi) with other ligands such as Mg(2+), ADP, ATP, and Ca(2+) on the activation of 2-oxoglutarate dehydrogenase complex (2-OGDH) in both isolated enzyme complex and mitochondrial extracts was examined. Pi alone activated the enzyme, following biphasic kinetics with high (K(0.5) = 1.96+/-0.42 mM) and low (K(0.5) = 9.8+/-0.4 mM) affinity components for Pi. The activation by Pi was highly pH-dependent; it increased when the pH raised from 7.1 to 7.6, but it was negligible at pH values below 7.1. Mg-Pi and Mg-ADP, but not Mg-ATP, were more potent activators of 2-OGDH than free Pi and free ADP. ATP inhibited the 2-OGDH activity by chelating the free Mg(2+) and also as a Mg-ATP complex. With or without Mg(2+), ADP, and Pi activated the 2-OGDH by increasing the affinity for 2-OG and the V(m) of the reaction; ATP diminished the V(m), but it increased the affinity for 2-OG in the mitochondrial extract. Pi did not modify the 2-OGDH activation by Ca(2+). The results above mentioned were similar for both preparations, except for hyperbolic kinetics in the isolated enzyme and sigmoidal kinetics in the mitochondrial extracts when 2-oxoglutarate was varied. The data of this study indicated that physiological concentrations of Pi may exert a significant activation of 2-OGDH, which was potentiated by Mg(2+) and high pH, but surpassed by ADP.  相似文献   

14.
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.  相似文献   

15.
The diphosphoinositide kinase of rat brain   总被引:11,自引:9,他引:2       下载免费PDF全文
1. The supernatant fraction of adult rat brain contains a diphosphoinositide kinase. 2. Formation of triphosphoinositide by the enzyme in the presence of ATP and Mg(2+) ions was shown with labelled ATP or labelled diphosphoinositide. 3. The kinase was also activated by Ca(2+), Mn(2+) and Co(2+) ions, but to a smaller extent than by Mg(2+) ions. 4. In the presence of optimum Mg(2+) ion concentration the enzyme was inhibited by Ca(2+) ions. 5. Activity did not depend on thiol groups and the pH optimum was 7.3. 6. The dialysed supernatant fraction had no diglyceride kinase activity and negligible phosphatidylinositol kinase activity. 7. Triphosphoinositide phosphomonoesterase was present but showed little activity under the conditions used to assay the kinase. 8. Diphosphoinositide kinase was purified by ammonium sulphate fractionation, ethanol treatment and chromatography on Sephadex G-200. 9. This purification removed much of the triphosphoinositide phosphomonoesterase.  相似文献   

16.
Brain microglia are a major source of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), which have been implicated in the progression of neurodegenerative diseases. Recently, microglia were revealed to be highly responsive to ATP, which is released from nerve terminals, activated immune cells, or damaged cells. It is not clear, however, whether released ATP can regulate TNF-alpha secretion from microglia. Here we demonstrate that ATP potently stimulates TNF-alpha release, resulting from TNF-alpha mRNA expression in rat cultured brain microglia. The TNF-alpha release was maximally elicited by 1 mM ATP and also induced by a P2X(7) receptor-selective agonist, 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, suggesting the involvement of P2X(7) receptor. ATP-induced TNF-alpha release was Ca(2+)-dependent, and a sustained Ca(2+) influx correlated with the TNF-alpha release in ATP-stimulated microglia. ATP-induced TNF-alpha release was inhibited by PD 098059, an inhibitor of extracellular signal-regulated protein kinase (ERK) kinase 1 (MEK1), which activates ERK, and also by SB 203580, an inhibitor of p38 mitogen-activated protein kinase. ATP rapidly activated both ERK and p38 even in the absence of extracellular Ca(2+). These results indicate that extracellular ATP triggers TNF-alpha release in rat microglia via a P2 receptor, likely to be the P2X(7) subtype, by a mechanism that is dependent on both the sustained Ca(2+) influx and ERK/p38 cascade, regulated independently of Ca(2+) influx.  相似文献   

17.
Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor.  相似文献   

18.
The Ca2+/Mg2+ ATPase of rat heart plasma membrane was activated by millimolar concentrations of Ca2+ or Mg2+; other divalent cations also activated the enzyme but to a lesser extent. Sodium azide at high concentrations inhibited the enzyme by about 20%; oligomycin at high concentrations also inhibited the enzyme slightly. Trifluoperazine at high concentrations was found inhibitory whereas trypsin treatment had no significant influence on the enzyme. The rate of ATP hydrolysis by the Ca2+/Mg2+ ATPase decayed exponentially; the first-order rate constants were 0.14-0.18 min-1 for Ca2+ ATPase activity and 0.15-0.30 min-1 for Mg2+ ATPase at 37 degrees C. The inactivation of the enzyme depended upon the presence of ATP or other high energy nucleotides but was not due to the accumulation of products of ATP hydrolysis. Furthermore, the inactivation of the enzyme was independent of temperature below 37 degrees C. Con A when added into the incubation medium before ATP blocked the ATP-dependent inactivation; this effect was prevented by alpha-methylmannoside. In the presence of low concentrations of detergent, the rate of ATP hydrolysis was reduced while the ATP-dependent inactivation was accelerated markedly. Both Con A and glutaraldehyde decreased the susceptibility of Ca2+/Mg2+ ATPase to the detergent. These results suggest that the Ca2+/Mg2+ ATPase is an intrinsic membrane protein which may be regulated by ATP.  相似文献   

19.
TRPM7 is a Ca(2+)- and Mg(2+)-permeable cation channel that also contains a protein kinase domain. While there is general consensus that the channel is inhibited by free intracellular Mg(2+), the functional roles of intracellular levels of Mg.ATP and the kinase domain in regulating TRPM7 channel activity have been discussed controversially. To obtain insight into these issues, we have determined the effect of purine and pyrimidine magnesium nucleotides on TRPM7 currents and investigated the possible involvement of the channel's kinase domain in mediating them. We report here that physiological Mg.ATP concentrations can inhibit TRPM7 channels and strongly enhance the channel blocking efficacy of free Mg(2+). Mg.ADP, but not AMP, had similar, albeit smaller effects, indicating a double protection against possible Mg(2+) and Ca(2+) overflow during variations of cell energy levels. Furthermore, nearly all Mg-nucleotides were able to inhibit TRPM7 activity to varying degrees with the following rank in potency: ATP > TTP > CTP > or = GTP > or = UTP > ITP approximately free Mg(2+) alone. These nucleotides also enhanced TRPM7 inhibition by free Mg(2+), suggesting the presence of two interacting binding sites that jointly regulate TRPM7 channel activity. Finally, the nucleotide-mediated inhibition was lost in phosphotransferase-deficient single-point mutants of TRPM7, while the Mg(2+)-dependent regulation was retained with reduced efficacy. Interestingly, truncated mutant channels with a complete deletion of the kinase domain regained Mg.NTP sensitivity; however, this inhibition did not discriminate between nucleotide species, suggesting that the COOH-terminal truncation exposes the previously inaccessible Mg(2+) binding site to Mg-nucleotide binding without imparting nucleotide specificity. We conclude that the nucleotide-dependent regulation of TRPM7 is mediated by the nucleotide binding site on the channel's endogenous kinase domain and interacts synergistically with a Mg(2+) binding site extrinsic to that domain.  相似文献   

20.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号