首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Reduction of postischemic edema with hyperbaric oxygen   总被引:3,自引:0,他引:3  
In recent years, reports have shown positive effects of hyperbaric oxygen (HBO) treatment in posttraumatic circulatory insufficiency of the extremities. A tourniquet model for temporary ischemia was used to examine such treatment in rats. The circulation of the rat hindlimb was interrupted for 3 hours, while the contralateral uninjured leg served as control. There was a significant (p less than 0.001) postischemic edema in the tourniquet leg up to 48 hours after restoration of circulation. One group of animals received treatment with hyperbaric oxygen at 2.5 atmospheres absolute (ATA) for 45 minutes after release of the tourniquet. This significantly reduced (p less than 0.001) the postischemic edema, and the reduction persisted for 40 hours after the last treatment. It is concluded that hyperbaric oxygen reduces postischemic edema. Hyperbaric oxygen may therefore be useful as an adjuvant in the treatment of acute ischemic conditions when surgical repair alone fails or is not sufficient to reverse the ischemic process.  相似文献   

2.
Metabolic effects of hyperbaric oxygen in postischemic muscle   总被引:5,自引:0,他引:5  
In traumatic injuries to the extremities, with a circulatory insufficiency, the resultant ischemia leads to decreasing levels of the energy-rich compounds adenosine triphosphate (ATP) and phosphocreatine (PCr) and increasing levels of lactate in muscle. A tourniquet model for temporary ischemia was used to determine if hyperbaric oxygen treatment could enhance the cellular metabolic restitution when the circulation was restored. The circulation of the rat hindlimb was interrupted for 1.5 and 3 hours. After 1.5 hours of ischemia, the levels of adenosine triphosphate, phosphocreatine, and lactate were restored to normal in muscle biopsies taken 5 hours after the ischemia. After 3 hours of ischemia, there were marked reductions of adenosine triphosphate and phosphocreatine and elevated lactate values in the postischemic muscle, indicating severe ischemic damage. Hyperbaric oxygen treatment at 2.5 atm for 45 minutes reduced these changes significantly. A certain number of hyperbaric oxygen treatments were necessary to maintain this effect. It is concluded that repeated hyperbaric oxygen treatments in the postischemic phase stimulate aerobic metabolism.  相似文献   

3.
The influence of hyperbaric oxygen (HBO) treatment on the activities of superoxide dismutase (SOD) and Na+,K+-ATPase was determined during different time periods of reperfusion in rats exposed to global cerebral ischemia. Ischemic animals were either sacrificed or exposed to the first HBO treatment 2, 24, 48 or 168 h after ischemic insult (for SOD activities measurement) or immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na+,K+-ATPase activities measurement). Hyperbaric oxygenation procedure was repeated for seven consecutive days. The results of presented experiments demonstrated the statistically significant increase in the hippocampal SOD activity 24 and 48 h after global cerebral ischemia followed by a decrease in the enzymatic activity 168 h after ischemic insult. In the ischemic rats treated with HBO the level of hippocampal SOD activity was significantly higher after 168 h of reperfusion in comparison to the ischemic, non HBO-treated animals. In addition, it was found that global cerebral ischemia induced a statistically significant decrease of the hippocampal Na+,K+-ATPase activity starting from 1 to 168 h of reperfusion. Maximal enzymatic inhibition was obtained 24 h after the ischemic damage. Decline in Na+,K+-ATPase activity was prevented in the animals exposed to HBO treatment within the first 24 h of reperfusion. Our results suggest that global cerebral ischemia induces significant alterations in the hippocampal SOD and Na+,K+-ATPase activities during different periods of reperfusion. Enhanced SOD activity and preserved Na+,K+-ATPase activity within particular periods of reperfusion, could be indicators of a possible benefitial role of HBO treatment in severe brain ischemia.  相似文献   

4.
The present study was designed to investigate the early and late effects of ischemic preconditioning on muscle flap perfusion and reperfusion-induced skeletal muscle damage. Thirty-six Sprague-Dawley rats were divided into six experimental groups of six animals each. The cremaster muscle flap model and the intravital microscopy system were used to observe microcirculatory changes associated with ischemia-reperfusion injury and ischemic preconditioning. In groups 1, 2, and 3, microcirculatory measurements were taken on the same day; however, in groups 4, 5, and 6, measurements were taken a day after surgery. Group 1 served as a control. The cremaster muscle was prepared as a tube flap, subjected to an hour of perfusion without ischemia. In group 2 (ischemic preconditioning + ischemia group), the cremaster muscle tube flap was subjected to 30 minutes of ischemia and 30 minutes of reperfusion, followed by 4 hours of total ischemia. In group 3 (ischemia alone), the flap was submitted to 4 hours of ischemia alone. In group 4 (control), the cremaster muscle flaps were dissected out, preserved in the subcutaneous tunnel, and submitted to 24 hours of perfusion only. In group 5 (ischemic preconditioning + 24 hours of perfusion + 4 hours of ischemia), the ischemic preconditioning protocol was followed by 24 hours of perfusion and 4 hours of ischemia. In group 6 (24 hours of perfusion + ischemia), the same protocol was used as in group 5 without ischemic preconditioning. Functional capillary perfusion, and the diameters of the arterioles of the first, second, and third order were significantly increased in the ischemic preconditioning group during the early period, but not after 24 hours of perfusion. No differences in the red blood cell velocities of arterioles of the first, second, or third order were found in either the early-effect or late-effect groups. The numbers of rolling, adhering, and transmigrating leukocytes, however, were significantly lower in the ischemic preconditioning group at both early and late follow-up. Ischemic preconditioning of the skeletal muscle flap has both an early and a late protective effect against reperfusion injury. Ischemic preconditioning at the early interval significantly improves muscle flow hemodynamics of the flap and attenuates leukocyte-mediated reperfusion injury. After 24 hours of reperfusion, however, ischemic preconditioning failed to improve the flow hemodynamics of the flap, yet it still protected the skeletal muscle flap from leukocyte-mediated reperfusion injury.  相似文献   

5.
高压氧对局灶性脑缺血后细胞凋亡的影响及其机制   总被引:2,自引:0,他引:2  
目的:观察不同时间点高压氧(HBO)治疗对短暂性脑缺血的作用,并探讨其对细胞凋亡的影响。方法:在客观监测局部脑血流的条件下,大鼠经历短暂脑缺血后3h,6h,12h应用HBO治疗,24h后行神经功能评分和梗死体积测定,免疫组化染色各组Bcl-2、Bax、活性Caspase-3、活性Caspase-9以及TUNEL法检测细胞凋亡。结果:缺血后3h HBO治疗减少70%梗死体积,缺血后6hHBO治疗则减少梗死体积约44%,早期应用HBO治疗增加半暗带区细胞内Bcl-2的表达,减少活性Caspase-9和活性Caspase-3以及TUNEL阳性细胞数;缺血后12h应用HBO治疗却恶化神经功能,扩大梗死范围,而对上述凋亡各指标无影响。结论:HBO治疗短暂性局灶脑缺血具有时间窗,应争取在缺血后6h内应用HB0治疗,其早期治疗的神经保护作用与抑制细胞凋亡有关。  相似文献   

6.
Various reports in the literature have shown that hyperbaric oxygen (HBO) reduces cerebral infarction both in animals and humans. After the initial ischemic insult, however, initiating HBO treatment at different intervals has yielded conflicting results. The present study was undertaken to determine the optimal therapeutic window in which to start HBO treatment for cerebral infarction after transient focal ischemia. In this study, the operator occluded the middle cerebral artery (MCA) of anesthetized rats by introducing a blunted nylon filament into the proximal MCA from the dissected external carotid artery. When the operator removed the filament after 2 h, focal ischemia and reperfusion occurred. The operator then placed the rat in the HBO chamber and administered 3 atm absolute HBO for 1 h according to the protocol. The rat was killed 24 h after reperfusion, and the percentage of infarction (infarct ratio) was calculated by dividing the infarction area by the total area of the ipsilateral hemisphere. The results showed that the percentage of infarcted area decreased significantly (P < 0.05) both in the 3- (7.59%) and 6-h (5.35%) HBO-treatment groups compared with the control (no treatment) group (11.34%). However, the percentage of infarcted area increased significantly (P < 0.01 and P < 0.05, respectively) both in the 12- (23%) and 23-h (20%) treatment groups. The results of this study suggest that applying HBO within 6 h of ischemia-reperfusion injury could benefit the patient but that applying HBO 12 h or more after injury could harm the patient.  相似文献   

7.
《Free radical research》2013,47(5):385-391
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

8.
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   

9.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

10.
Preexisting magnesium deficiency may alter the susceptibility of rat hearts to postischemic oxidative injury (free radicals). This was examined in rats maintained for 3 weeks on a magnesium-deficient (Mg-D) diet with or without concurrent vitamin E treatment (1.2 mg/day, SC). Magnesium-sufficient (Mg-S) rats received the same diet supplemented with 100 mmol Mg/kg feed. Following sacrifice, isolated working hearts were subjected to 30-, 40-, or 60-min global ischemia and 30-min reperfusion. Postischemic production of free radicals was monitored using electron spin resonance (ESR) spectroscopy and spin trapping with -phenyl-N-tert butylnitrone (PBN, 3 mM final); preischemic and postischemic effluent samples were collected and then extracted with toluene. PBN/alkoxyl adduct(s) (PBN/RO·; H = 1.93 G,N = 13.63 G) were the dominant signals detected in untreated Mg-S and Mg-D postischemic hearts, with comparably higher signal intensities observed for the Mg-D group following any ischemic duration. Time courses of postischemic PBN/RO· detection were biphasic for both groups (maxima: 2–4 and 8.5–12.5 min), and linear relationships between the extent of PBN/RO· production and the severity of both mechanical dysfunction and tissue injury were determined. Following each duration of ischemia, Mg-D hearts displayed greater levels of total PBN adduct production (1.7 –2.0 times higher) and lower recovery of cardiac function (42–48% less) than Mg-S hearts. Pretreating Mg-D rats with vitamin E prior to imposing 40-min ischemia/reperfusion, led to a 49% reduction in total PBN/RO· production, a 55% lower LDH release and a 2.2-fold improvement in functional recovery, compared to untreated Mg-D hearts. These data suggest that magnesium deficiency predisposes postischemic hearts to enhanced oxidative injury and functional loss, and that antioxidants may offer significant protection against pro-oxidant influence(s) of magnesium deficiency.  相似文献   

11.
Effect of low flow ischemia-reperfusion injury on liver function   总被引:2,自引:0,他引:2  
Bailey SM  Reinke LA 《Life sciences》2000,66(11):1033-1044
The release of liver enzymes is typically used to assess tissue damage following ischemia-reperfusion. The present study was designed to determine the impact of ischemia-reperfusion on liver function and compare these findings with enzyme release. Isolated, perfused rat livers were subjected to low flow ischemia followed by reperfusion. Alterations in liver function were determined by comparing rates of oxygen consumption, gluconeogenesis, ureagenesis, and ketogenesis before and after ischemia. Lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) activities in effluent perfusate were used as markers of parenchymal and endothelial cell injury, respectively. Trypan blue staining was used to localize necrosis. Total glutathione (GSH + GSSG) and oxidized glutathione (GSSG) were measured in the perfusate as indicators of intracellular oxidative stress. LDH activity was increased 2-fold during reperfusion compared to livers kept normoxic for the same time period whereas PNP activity was elevated 5-fold under comparable conditions. Rates of oxygen consumption, gluconeogenesis, and ureagenesis were unchanged after ischemia, but ketogenesis was decreased 40% following 90 min ischemia. During reperfusion, the efflux rates of total glutathione and GSSG were unchanged from pre-ischemic values. Significant midzonal staining of hepatocyte nuclei was observed following ischemia-reperfusion, whereas normoxic livers had only scattered staining of individual cells. Reperfusion of ischemic liver caused release of hepatic enzymes and midzonal cell death, however, several major liver functions were unaffected under these experimental conditions. These data indicate that there were negligible changes in liver function in this model of ischemia and reperfusion despite substantial enzyme release from the liver and midzonal cell death.  相似文献   

12.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠 15min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高  相似文献   

13.
We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P<0.05; n=4 pigs). PostC induced by four cycles of 30-s reperfusion/reocclusion at the onset of reperfusion after 4 h ischemia reduced muscle infarction from 44+/-2 to 22+/-2% at 48 h reperfusion. This infarct protective effect of PostC was mimicked by intravenous injection of the mPTP opening inhibitor cyclosporin A or NIM-811 (10 mg/kg) at 5 min before the end of 4 h ischemia and was abolished by intravenous injection of the mPTP opener atractyloside (10 mg/kg) at 5 min before PostC (P<0.05; n=4-5 pigs). PostC or intravenous cyclosporin A injection at 5 min before reperfusion caused a decrease in muscle myeloperoxidase activity and mitochondrial free Ca2+ concentration and an increase in muscle ATP content after 4 h ischemia and 2 h reperfusion compared with the time-matched controls. These effects of PostC were abolished by intravenous injection of atractyloside at 5 min before PostC (P<0.05; n=6 pigs). These observations support our hypothesis that PostC is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mPTP.  相似文献   

14.
Exogenous administration of vascular endothelial growth factor (VEGF) improves long-term viability of myocutaneous flaps. However, endogenous expression of this substance in flaps following ischemia-reperfusion injury has not been reported previously. Endogenous production of VEGF was measured in myocutaneous pig latissimus dorsi flaps after ischemia-reperfusion injury. Latissimus dorsi myocutaneous flaps (15 x 10 cm) were simultaneously elevated bilaterally in six Yorkshire-type male pigs (25 kg). Before elevation, three flap zones (5 x 10 cm) were marked according to their distance from the vascular pedicle. After isolation of the vascular pedicle, ischemia-reperfusion injury was induced in one flap by occlusion of the thoracodorsal artery and vein for 4 hours, followed by 2 hours of reperfusion. The contralateral flap served as a control. Perfusion in each zone was monitored by laser Doppler flowmetry at baseline, during ischemia, and during reperfusion. At the end of the protocol, skin and muscle biopsies of each flap zone and adjacent tissues were obtained for later determination of VEGF protein levels. VEGF concentrations were quantified using the Quantikine human VEGF immunoassay. Skin perfusion was similar among all flap zones before surgery. Flow fell in all flaps immediately after flap elevation. After 4 hours of ischemia, blood flow in the ischemic flaps was significantly decreased (p < 0.05) compared with nonischemic control flaps. After 2 hours of reperfusion, flow in ischemic flap skin recovered to levels similar to those in control flaps. VEGF protein concentrations in muscle tissue exceeded concentrations in skin and decreased from zones 2 to 3 in control and ischemic flaps. No significant differences in VEGF concentrations between ischemic and control muscle zones were observed. However, the concentration of VEGF in all muscle zones was significantly higher (p < 0.05) than muscle adjacent to the flap. Concentrations in skin zones 1 and 2 were significantly higher (p < 0.05) in ischemic flaps than in control flaps, but levels in zone 3 (most ischemic flaps) showed no significant difference.  相似文献   

15.
Acute tubular necrosis is a frequent occurrence following hypovolemic shock and human renal transplantation. Although this postischemic injury was originally thought to result from ischemia alone, it has recently been recognized that significant tissue injury can occur during the period of reperfusion. The demonstration of the oxygen free-radical-mediated postischemic reperfusion injury by Granger, Rutili, and McCord in ischemic cat intestine suggested that this mechanism might also be operative following renal ischemia. In the kidney, postischemic injury results in necrosis of the proximal renal tubule and accumulation of erythrocytes in the outer renal medulla. It has been proposed that the primary event leading to these pathologic changes is a free-radical-mediated injury to the endothelial cells in the inner stripe of the outer medulla. Experimental evidence in animals subjected to warm and cold ischemia supports a free-radical-mediated mechanism. The clinical significance of these findings is demonstrated in preclinical animal studies of renal transplantation in which approximately two-thirds of the injury following cold ischemia could be ablated by superoxide dismutase administered just prior to reperfusion or by allopurinol when administered both at the time of preservation and reperfusion or at the time of preservation alone.  相似文献   

16.
We determined the role of endogenous hydrogen sulfide (H₂S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn’t further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia.  相似文献   

17.
Antioxidant status following acute ischemic limb injury: A rabbit model   总被引:6,自引:0,他引:6  
Although ischemic injury to skeletal muscle is a matter of great clinical importance, relatively little is known about the mechanisms which determine systemic responses. One purpose of this study is to elucidate the systemic antioxidant status following an episode of acute ischemic limb injury and subsequent reperfusion.

Twelve New Zealand white rabbits were used in this study. After the animals were anesthetized, an ischemic insult was created in the right hind limb for twelve hours, followed by four hours of reperfusion. Several series of blood samples were obtained. At the end of the experiment, the animals were killed and necropsies undertaken in order to evaluate the antioxidant status of various visceral organs.

The results link ischemia and reperfusion injury to a significant decline in antioxidative activity in various tissues. The weakening in antioxidant status after ischemic limb injury was most pronounced in the heart tissue, followed in descending order by the spleen, skeletal muscle, lung, liver, and kidney tissue. The levels of specific antioxidants and reactive oxygen species in various organs changed significantly, and the changes were tissue specific. Endogenous radical scavenging systems were not entirely overwhelmed in most of the tissues studied. But higher levels of malondialdehyde (MDA) found in cardiac tissue suggest that the production of oxygen free radicals is accelerated by an ischemic injury. Based on the study, we believe that the cardiac tissue is particularly susceptible to the effects of ischemia and reperfusion injury. Damage to cardiac tissue is probably the major cause of mortality following acute ischemic injury in a limb.  相似文献   

18.
The objectives of this study were to determine 1) whether reactive oxygen species generated upon postischemic reperfusion lead to oxidative stress in rat hearts, and 2) whether an exogenous prooxidant present in the early phase of reperfusion causes additional injury. Isolated buffer-perfused rat hearts were subjected to 30 min of hypothermic no-flow ischemia followed by 30 min of reperfusion. Increased myocardial content of glutathione disulfide (GSSG) and increased active transport of GSSG were used as indices of oxidative stress. To impose a prooxidant load, cumene hydroperoxide (20 M) was administered during the first 10 min of reperfusion to a separate group of postischemic hearts. Reperfusion after 30 min of hypothermic ischemia resulted in a recovery of myocardial ATP from 28% at end-ischemia to 50–60%, a release of 5% of total myocardial LDH, and an almost complete recovery of both coronary flow rate and left ventricular developed pressure. After 5 and 30 min of reperfusion, neither myocardial content of GSSG nor active transport of GSSG were increased. These indices were increased, however, if cumene hydroperoxide was administered during early reperfusion. After stopping the administration of cumene hydroperoxide, myocardial GSSG content returned to control values and GSH content increased, indicating an unimpaired glutathione reductase reaction. Despite the induction of oxidative stress, reperfusion with cumene hydroperoxide did not cause additional metabolic, structural, or functional injury when compared to reperfusion without cumene hydroperoxide. We conclude that reactive oxygen species generated upon postischemic reperfusion did not lead to oxidative stress in isolated rat hearts. Moreover, even a superimposed prooxidant load during early reperfusion did not cause additional injury.  相似文献   

19.
Ko YE  Lee IH  So HM  Kim HW  Kim YH 《Free radical research》2011,45(9):1074-1082
It has been reported that myocardial glutathione content is decreased during ischemia-reperfusion, but the mechanism of glutathione depletion has remained unclear. The present study tested whether osmotic stress is involved in the glutathione depletion during ischemia. Six hours of hypoxic acidosis with either high CO(2) tension or low HCO(3)(-) concentration, which simulates the ischemic condition, resulted in a significant decrease of glutathione content and the glutathione depletion was prevented by hyperosmolarity. High-CO(2) acidosis alone without hypoxia induced a similar degree of glutathione depletion. Intracellular pH was lowered by high-CO(2) acidosis to 6.41 ± 0.03 in 15 min. Meanwhile, the cell size gradually increased and reached ~110% in 10 min and the increased cell size was maintained for at least 30 min, which was also prevented by hyperosmolarity. Subsequent experiments observed the effects of simulated reperfusion on the glutathione content. Measured in 1 h after the hypoxic acidotic reperfusion, the glutathione content was further decreased compared to the level at the end of ischemia, which was not suppressed by increasing the osmolarity of reperfusion solution. The degree of glutathione depletion during hypoxic reperfusion with normal pH was similar to the hypoxic acidotic reperfusion group. On the other hand, normoxic reperfusion was not accompanied by further depletion of glutathione content. Based on these results, it was concluded that ischemia induces the glutathione depletion via osmotic stress, which results from intracellular acidification, and the glutathione content is further decreased during reperfusion through a mechanism other than oxygen toxicity.  相似文献   

20.
The involvement of nitric oxide in ischemia-reperfusion injury remains controversial and has been reported to be both beneficial and deleterious, depending on the tissue and model used. This study evaluated the effects of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) and the substrate for nitric oxide synthase, L-arginine on skeletal muscle necrosis in a rat model of ischemia-reperfusion injury. The rectus femoris muscle in male Wistar rats (250 to 500 g) was isolated on its vascular pedicle and subjected to 4 hours of complete arteriovenous occlusion. The animals were divided into five groups: (1) sham-raised control, no ischemia, no treatment (n = 6); (2) 4 hours of ischemia (n = 6); (3) vehicle control, 4 hours of ischemia + saline (n = 6); (4) 4 hours of ischemia + L-arginine infusion (n = 6); and (5) 4 hours of ischemia + L-NAME infusion (n = 6). The infusions (10 mg/kg) were administered into the contralateral femoral vein beginning 5 minutes before reperfusion and during the following 30 to 45 minutes. Upon reperfusion, the muscle was sutured in its anatomic position and all wounds were closed. The percentage of muscle necrosis was assessed after 24 hours of reperfusion by serial transections, nitroblue tetrazolium staining, digital photography, and computerized planimetry. Sham (group 1) animals sustained baseline necrosis of 11.9 +/- 3.0 (percentage necrosis +/- SEM). Four hours of ischemia (group 2) significantly increased necrosis to 79.2 +/- 1.4 (p < 0.01). Vehicle control (group 3) had no significant difference in necrosis (81.17 +/- 5.0) versus untreated animals subjected to 4 hours of ischemia (group 2). Animals treated with L-arginine (group 4) had significantly reduced necrosis to 34.6 +/- 7.5 versus untreated (group 2) animals (p < 0.01). Animals infused with L-NAME (group 5) had no significant difference in necrosis (68.2 +/- 6.7) versus untreated (group 2) animals. L-Arginine (nitric oxide donor) significantly decreased the severity of muscle necrosis in this rat model of ischemia-reperfusion injury. L-arginine is known to increase the amount of nitric oxide through the action of nitric oxide synthase, whereas L-NAME, known to inhibit nitric oxide synthase and decrease nitric oxide production, had comparable results to the untreated 4-hour ischemia group. These results suggest that L-arginine, presumably through nitric oxide mediation, appears beneficial to rat skeletal muscle subjected to ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号