首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We are studying the cellular signaling pathway leading to pterocarpan phytoalexin biosynthesis in soybean that is induced by a branched hepta-β-glucoside originally isolated from the mycelial walls of the phytopathogenic oomycete Phytophthora sojae. Our research has focused on the specific recognition of the hepta-β-glucoside elicitor by binding proteins in soybean cells. Elicitor-binding proteins with properties expected of physiological receptors for the hepta-β-glucoside elicitor have been identified in soybean root membranes. These elicitor-binding proteins co-migrate with a plasma membrane marker (vanadate-sensitive H+-ATPase) on linear sucrose density gradients. Binding of a radio-iodinated derivative of the hepta-β-glucoside elicitor by membrane-localized elicitor-binding proteins is specific, reversible, saturable, and of high affinity (Kd? 1 nM). After solubilization with the nonionic detergent, n-dodecylsucrose, the elicitor-binding proteins retain their high affinity (Kd= 1.8 nM) for the radiolabeled elicitor and their binding specificity for elicitor-active oligoglucosides. A direct correlation is observed between the ability of oligoglucosides to displace labeled elicitor from the elicitor-binding proteins and the elicitor activity of the oligosaccharides. Thus, the elicitor-binding proteins recognize the same structural elements of the hepta-β-glucoside elicitor that are essential for its phytoalexin-inducing activity, suggesting that the binding proteins are physiological receptors for the elicitor. Current research is directed toward the purification of the hepta-β-glucoside elicitor-binding proteins by using ligand affinity chromatography. Purification and characterization of the hepta-β-glucoside binding proteins are among the first steps toward elucidating how the hepta-β-glucoside elicitor triggers the signal transduction pathway that ultimately leads to the synthesis of phytoalexins in soybean.  相似文献   

2.
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.  相似文献   

3.
4.
5.
Côté F  Roberts KA  Hahn MG 《Planta》2000,211(4):596-605
 Previous studies have led to the identification and characterization of specific, high-affinity binding sites for a hepta-β-glucoside elicitor in soybean. A survey of plant species for elicitor-binding activity reveals that among the plants tested, the hepta-β-glucoside elicitor is only recognized by plants belonging to the legume family. We have characterized in detail the glucan elicitor-binding site in the model legume Medicago truncatula Gaertn., and partially characterized the site in Lotus japonicus. These sites have characteristics that are very similar to the one in soybean, with dissociation constants of 4.7 and 8.9 nM respectively. The elicitor-binding sites from both plants are stable during solubilization with non-ionic alkylglycoside detergents. However, differences are observed in the abundance of the binding sites and their selectivity towards structurally related analogues of the hepta-β-glucoside elicitor. Our results suggest that similar, but perhaps not identical, binding sites for the hepta-β-glucoside elicitor exist in diverse legumes, but not in plants outside of the legume family. Received: 15 December 1999 / Accepted: 28 February 2000  相似文献   

6.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是具有7个跨膜螺旋的蛋白质受体,是人体内最大的蛋白质超家族.GPCRs能调控细胞周期,参与多种植物信号通路以及影响一系列的代谢和分化活动.简要介绍了GPCR和G蛋白介导的信号转导机制,GPCRs的结构和植物GPCR及其在植物跨膜信号转导中的作用,并对GPCR的信号转导机制及植物抗病反应分子机制的研究提出展望.  相似文献   

7.
Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens. Received: 29 January 1998 / Accepted: 17 March 1998  相似文献   

8.
9.
14-3-3蛋白是高度保守并在真核生物中普遍存在的一类调节蛋白。不同的14-3-3蛋白同工型具有不同的细胞特异性, 并通过识别特异的磷酸化序列与靶蛋白相互作用, 被称为蛋白质与蛋白质相互作用的桥梁蛋白。在植物生长发育过程中, 14-3-3蛋白通过与其它蛋白的相互作用参与多种植物激素信号转导、各种代谢调控、物质运输和光信号应答等调控过程。该文主要对近年来有关14-3-3蛋白在植物生长发育中的调控作用, 特别是14-3-3蛋白参与调控植物激素信号转导等方面的研究进展进行综述。  相似文献   

10.
Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.Key words: heterotrimeric G proteins, GPCRs, seven-transmembrane receptors, signal transduction, stress signaling  相似文献   

11.
12.

Background:  

Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses.  相似文献   

13.
The signaling adaptors and pathways activated by TNF superfamily   总被引:12,自引:0,他引:12  
  相似文献   

14.
During brain aging and progression of Alzheimer’s disease, the levels of Aβ and proinflammatory cytokines accumulate very early in the pathogenic process prior to any major degenerative changes. Accumulation of these molecules may impair with signal transduction pathways critical for neuronal health. Neurotrophin signaling is a critical mechanism involved in synaptic plasticity, learning and memory and neuronal health. We have recently shown that exposure to low levels of Aβ impairs BDNF trkB signal transduction, suppressing the Ras/ERK, and the PI3-K/Akt pathways but not the PLCγ pathway. As a result, downstream regulation of gene expression and neuronal viability are impaired. Recently, we have found that at least three agents – Aβ, TNFα, Il-1β – suppress TrkB signaling and act via a common and novel mechanism. These factors all regulate the docking proteins (e.g., IRS and Shc) that link the activated Trk receptor to downstream effectors. While this is a novel mechanism underlying regulation of Trk signaling, such a mechanism has been identified for the insulin/IGF-1 receptor in the presence of proinflammatory cytokines and is one of the mechanisms for insulin/IGF-resistance, which is a key risk factor for type II diabetes (1). We suggest that accumulation of AB and proinflammatory cytokines during aging generates in the brain a “neurotrophin resistance” state that places the brain at risk for cognitive decline and dementia.  相似文献   

15.
Plant growth and development are coordinalely controlled by several internal factors and environmental signals. To sense these environmental signals, the higher plants have evolved a complex signaling network, which may also cross talk with each other. Plants can respond to the signals as individual cells and as whole organisms. Various receptors including phytochromes, G-proteins coupled receptors (GPCR), kinase and hormone receptors play important role in signal transduction but very few have been characterized in plant system. The heterotrimeric G-proteins mediate the coupling of signal transduction from activated GPCR to appropriate downstream effectors and thereby play an important role in signaling. In this review we have focused on some of the recent work on G-proteins and two of the effectors, PLC and PLD, which have been shown to interact with Gα subunit and also discussed their role in abiotic stress tolerance.Key words: abiotic stress, G-protein couple receptor, heterotrimeric G-protein, phospholipases, plant receptors, signal transduction  相似文献   

16.
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits   总被引:1,自引:0,他引:1  
The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of "regulator of G-protein signaling" (RGS) proteins that accelerate the rate of GTP hydrolysis by Galpha subunits (dubbed GTPase-accelerating protein or "GAP" activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Galpha subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Galpha effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Galpha and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Galpha subunits to 7TM receptors in the absence of conventional Gbetagamma dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Galpha AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Galpha subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Galpha subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.  相似文献   

17.
Kay  Alan R 《BMC physiology》2004,4(1):1-9

Background  

Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors.  相似文献   

18.
19.
20.
The process generally termed signal transduction involves the coordinated relay of information from extracellular cues to intracellular effectors, subsequently leading to a specified cellular response. The formation of multimeric protein complexes is a critical step in the activation of most intracellular signal transduction cascades. In many cases, these processes are initiated by a family of molecules consisting of protein association motifs known as src homology 2 and 3 (SH2 and SH3) domains. This review focuses on a group of proteins within this family that lack intrinsic enzymatic functions and consist almost entirely of SH2 and SH3 domains. Termed “adaptors,” these proteins serve to physically bridge activated cell surface receptors to various intracellular signal transduction pathways. Here, I briefly summarize current knowledge concerning the various adaptor proteins and place a particular emphasis on Nck. Various data are discussed which collectively support a role for Nck in the regulation of multiple intracellular signaling events. BioEssays 20:913–921, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号