首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cyclic analogues of the active thrombin receptor peptide SFLLR (TRP42–46) containingd-Phe and/ord-Arg have been prepared by the solid-phase method, purified by reversed-phase HPLC and bioassayed in a rat smooth muscle contractile assay. Cyclization was achieved by forming an amide linkage between the-NH2 and-COOH groups of the two leucine residues located at the N- and C-terminal positions of the linear protected precursor H2N-Leu-Arg(Pmc)-Y-Phe-Leu-OH (Y=Gly,Acp) using 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluoroborate borate (HBTU) or 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) as coupling reagents andN,N-diisopropylethylamine (DIPEA) in high dilution. Their structure was confirmed by fast by fast atom bombardment mass spectrometry and NMR methods. The cyclic peptides c-fLLrG, c-fLLRG, c-FLLrG and c-fLLrAcp, c-FLLrAcp so synthesized were assessed for their contractile activity in a rat gastric longitudinal muscle bioassay system which has been used previously to evaluate the biological activities of linear thrombin-receptor-derived polypeptides such as SFLLR (P5) and SFLLR-NH2 (P5-NH2).  相似文献   

2.
Abstract

Baby hamster kidney (BHK) cells transfected with an expression vector for the human thrombin receptor, and then treated with basic fibroblast growth factor, were found to express specific and saturable binding sites for biotinylated thrombin receptor peptide (SFLLRNPNDKYEPF). Analysis of the binding to live BHK cells yielded an equilibrium dissociation constant (Kd) of 3.0±0.3 μmol/l and a maximal binding capacity (Bmax) of 31.0±0.5 nmol/mg of protein. In competitive binding experiments, the thrombin receptor agonist peptide (SFLLRN), which is a strong inducer of human platelet aggregation, was the most potent competitor. In contrast, position 1 to 2 inverted peptides such as FSLLRNPNDKYEPF and FSLLRNP, which fail to induce for the platelet aggregation, were less potent. This simple and convenient binding assay system using the biotinylated thrombin receptor peptide as a labeled ligand and the cloned thrombin receptor overexpressed in BHK cells may be useful for exploring specific antagonists of the receptor.  相似文献   

3.
Focal thrombus formation and vasoconstriction serve to defend vessels when vascular damage occurs, but may be detrimental when an atherosclerotic plaque is disrupted. Recently, the identification of the platelet thrombin receptor opened a new area in the development of agents that may selectively inhibit the effects of thrombin on cells, without affecting fibrin formation. In this regard, we have synthesized a number of 1,4-disubstituted piperazines which are designed to be analogues of thrombin receptor activating peptides (TRAP) and carry the pharmacophoric features of Phe and Arg residues present in the active pentapeptide SFLLR. These compounds were tested in the rat aorta relaxation assay and in platelet aggregation studies and their biological activity was consistent with a direct action on thrombin receptor. Furthermore, the structure activity relationships confirmed the importance of Phe and Arg for receptor activation and the molecular modeling revealed an intriguing relationship between their amphipathic similarity with SFLLR and their biological activity.  相似文献   

4.

Background

Brazilin, isolated from the heartwood of Caesalpinia sappan L., has been shown to possess multiple pharmacological properties.

Methods

In this study, platelet aggregation, flow cytometry, immunoblotting analysis, and electron spin resonance (ESR) spectrometry were used to investigate the effects of brazilin on platelet activation ex vivo. Moreover, fluorescein sodium-induced platelet thrombi of mesenteric microvessels was also used in in vivo study.

Results

We demonstrated that relatively low concentrations of brazilin (1 to 10 μM) potentiated platelet aggregation induced by collagen (0.1 μg/ml) in washed human platelets. Higher concentrations of brazilin (20 to 50 μM) directly triggered platelet aggregation. Brazilin-mediated platelet aggregation was slightly inhibited by ATP (an antagonist of ADP). It was not inhibited by yohimbine (an antagonist of epinephrine), by SCH79797 (an antagonist of thrombin protease-activated receptor [PAR] 1), or by tcY-NH2 (an antagonist of PAR 4). Brazilin did not significantly affect FITC-triflavin binding to the integrin αIIbβ3 in platelet suspensions. Pretreatment of the platelets with caffeic acid phenethyl ester (an antagonist of collagen receptors) or JAQ1 and Sam.G4 monoclonal antibodies raised against collagen receptor glycoprotein VI and integrin α2β1, respectively, abolished platelet aggregation stimulated by collagen or brazilin. The immunoblotting analysis showed that brazilin stimulated the phosphorylation of phospholipase C (PLC)γ2 and Lyn, which were significantly attenuated in the presence of JAQ1 and Sam.G4. In addition, brazilin did not significantly trigger hydroxyl radical formation in ESR analysis. An in vivo mouse study showed that brazilin treatment (2 and 4 mg/kg) significantly shortened the occlusion time for platelet plug formation in mesenteric venules.

Conclusion

To the best of our knowledge, this study provides the first evidence that brazilin acts a novel collagen receptor agonist. Brazilin is a plant-based natural product, may offer therapeutic potential as intended anti-thrombotic agents for targeting of collagen receptors or to be used a useful tool for the study of detailed mechanisms in collagen receptors-mediated platelet activation.  相似文献   

5.
Abstract

The rat vascular smooth muscle cell (VSMC) line A10 (ATCC CRL 1476) was stably transfected with a human c-fos promoter-driven luciferase reporter gene to monitor thrombin receptor activation and subsequent induction of c-fos expression. Selective activation of the endogeneous thrombin receptor by the thrombin receptor activating peptide (TRAP1-6), SFLLRN, is shown here to result in a significant transient increase of intracellular [Ca2+], dose-dependent induction of c-fos promoter-mediated luciferase activity, and stimulation of DNA synthesis. These data demonstrate that A10 cells and reporter line derivatives thereof possess a functional thrombin receptor very similar or identical to that previously described. Results obtained with various signal transduction modulating or inhibiting agents support previous notions showing that thrombin receptor activation by SFLLRN is coupled to events involving p21ras activation, protein tyrosine kinase, and activation of PKC. The A10 reporter line described here proved to be a helpful and reliable tool to study α-thrombin and TRAP1-6-mediated intracellular events, since it retained most of the spectrum of biological responses found in primary VSMC cultures.  相似文献   

6.
Platelet 12-lipoxygenase(p-12-LOX) is highly expressed in human platelets, and the development of p-12-LOX inhibitors has the potential to be a novel antithrombotic tool by inhibiting thrombosis without prolonging hemostasis. A chiral liquid chromatography-mass spectrometry(LC-MS/MS) method was used to assess the impact of three commercially available LOX inhibitors[esculetin(6,7-dihydroxycoumarin), ML-355(N-2-benzothiazolyl-4-[[(2-hydroxy-3-methoxyphenyl)methyl]amino]-benzenesulfonamide), CDC(cinnamyl-3,4-dihydroxy-α-cyanocinnamate) and acetylsalicylic acid(ASA; a cyclooxygenase-1 inhibitor) on the generation of prostanoids and HETEs(hydroxyeicosatetraenoic acids) in human whole blood allowed to clot for 1 h at 37 °C(serum), platelet-rich plasma(PRP) stimulated with collagen or TRAP-6(a peptide activating thrombin receptor) and washed platelets. In serum, ML-355 did not affect eicosanoid generation, while CDC caused an incomplete reduction of 12S-HETE levels; esculetin inhibited both 12S-HETE and thromboxane(TX)B2 production; ASA selectively affected TXB2 production. In washed platelets stimulated with thrombin, esculetin, and CDC inhibited both 12S-HETE and TXB2 while ML-355 was almost ineffective. In PRP, ML-355, CDC, and esculetin did not affect platelet aggregation associated with incomplete effects on eicosanoid biosynthesis. ASA alone or in combination with ticagrelor(a P2Y12 blocker) affected platelet aggregation associated with profound inhibition of TXB2 generation. P2Y12 receptor signaling contributed to platelet 12S-HETE biosynthesis in response to primary agonists. In conclusion, ML-355, esculetin, and CDC were not selective inhibitors of p-12-LOX in different cellular systems. They did not affect platelet aggregation induced in PRP by collagen or TRAP-6. The characterization of 12-LOX inhibitors on eicosanoids generated in human whole blood is useful for information on their enzyme selectivity, off-target effects, and the possible influence of plasma components on their pharmacological effects.  相似文献   

7.
Previous studies have demonstrated that 13-azaprostanoic acid (13-APA) is a potent and specific antagonist of thromboxane A2/prostaglandin H2 (TXA2/PGH2) at the platelet receptor level. In the present study we evaluated the effects of a new azaprostanoid, 2-(6-carboxyhexyl) cyclopentanone hexylhydrazone (CPH), on human platelet function. This hydrazone was found to completely inhibit arachidonic acid (AA)-induced platelet aggregation at 1 uM CPH. On the other hand, CPH was not an effective inhibitor of PGH2-induced aggregation. Furthermore, 100 uM CPH was completely ineffective in blocking platelet aggregation stimulated by adenosine diphosphate (ADP) or the stable prostaglandin endoperoxide analog U46619 (which presumably acts at the TXA2/PGH2 receptor). Measurement of platelet thromboxane B2 (TXB2) production demonstrated that the primary site-of-action of CPH is at the cyclo-oxygenase level. Thus, CPH inhibited TXB2 formation from AA in a dose-dependent manner (0.1 uM–100 uM CPH)2. In contrast, CPH blocked TXB2 production from PGH2 only at the highest CPH concentration tested, i.e., 100 uM. These results indicate that relative to 13-APA, addition of a second nitrogen at C14 and a double bond between the 12- and 13- positions results in a loss of receptor activity but produces a high affinity for the platelet cyclo-oxygenase.  相似文献   

8.
The inhibition of human platelet aggregation produced by PGF is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF (8 μM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 μM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 μM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets.PGF produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF.We suggest that the very weak effect of PGF on cyclic AMP_ production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

9.
Magnesium sulfate is widely used to prevent seizures in pregnant women with hypertension. The aim of this study was to examine the inhibitory mechanisms of magnesium sulfate in platelet aggregation in vitro. In this study, magnesium sulfate concentration-dependently (0.6–3.0 mM) inhibited platelet aggregation in human platelets stimulated by agonists. Magnesium sulfate (1.5 and 3.0 mM) also concentration-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by thrombin. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12-13-dibutyrate (PDBu, 50 nM). This phosphorylation was markedly inhibited by magnesium sulfate (3.0 mM). Magnesium sulfate (1.5 and 3.0 mM) further inhibited PDBu-stimulated platelet aggregation in human platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of magnesium sulfate (3.0 mM). In conclusion, these results indicate that the antiplatelet activity of magnesium sulfate may be involved in the following two pathways: (1) Magnesium sulfate may inhibit the activation of protein kinase C, followed by inhibition of phosphoinositide breakdown and intracellular Ca+2 mobilization, thereby leading to inhibition of the phosphorylation of P47. (2) On the other hand, magnesium sulfate inhibits the Na+/H+ exchanger, leading to reduced intracellular Ca+2 mobilization, and ultimately to inhibition of platelet aggregation and the ATP-release reaction.  相似文献   

10.
According to present models, thrombin activates platelets by cleaving its receptors after Arg41, creating a new N terminus which acts as a tethered ligand. In support of this model, a peptide (SFLLRNPNDKYEPF or TRP42/55) corresponding to residues 42-55 has been shown to activate the receptor. In the present studies, the structural basis for thrombin receptor activation was examined using fragments of this peptide, as well as variants of the peptide with selected amino acid substitutions. The results show that the features of SFLLRNPNDKYEPF required to mimic the effects of thrombin reside within the first 6 residues, SFLLRN. A hexapeptide comprised of these residues was approximately 5 times more potent than the parent peptide in assays of platelet aggregation and, in addition, caused tyrosine phosphorylation, inhibition of cAMP formation, and an increase in cytosolic Ca2+. Omission of either the Ser residue or the Arg and Asn residues greatly diminished peptide activity, as did the substitution of Ala for Phe or Arg. Substitution of Ala for Ser or the initial Leu, on the other hand, had little adverse effect. The inactive peptides SALLRN and NPNDKYEPF had no effect on platelet activation initiated by SFLLRN, but FLLRN inhibited platelet aggregation in response to both SFLLRN and thrombin. These results suggest that within SFLLRN the Phe and Arg residues are particularly important and that Phe must be preceded by another amino acid, the identity of which is not tightly constrained. This observation and comparisons with the homologous domains of proteins whose tertiary structure is known were used to predict the conformation of the SFLLR sequence. The model which emerged suggests that the SFLLR domain may be part of an extended beta structure in the intact receptor and that cleavage by thrombin causes it to contract and assume a modified helical configuration. In this predicted conformation the side chains of Phe and Arg point in the same direction, potentially into a pocket formed by the remainder of the receptor.  相似文献   

11.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.  相似文献   

12.
Polymer-assisted solution-phase (PASP) parallel library synthesis was used to discover a piperazinyl-glutamate-pyridine as a P2Y12 antagonist. Exploitation of this lead provided compounds with excellent inhibition of platelet aggregation as measured in a human platelet rich plasma (PRP) assay. Pharmacokinetic and physiochemical properties were optimized leading to compound (4S)-4-[({4-[4-(methoxymethyl)piperidin-1-yl]-6-phenylpyridin-2-yl}carbonyl)amino]-5-oxo-5-{4-[(pentyloxy)carbonyl]piperazin-1-yl}pentanoic acid 22J with good human PRP potency, selectivity, in vivo efficacy and oral bioavailability.  相似文献   

13.
The goal of this study was to synthesize a macromolecular probe of the TXA2 receptor antagonist BM13.505 which is unable to penetrate the platelet membrane for localization and characterization of the TXA2 receptor. The active NHS-ester of BM13.505 was synthesized and purified. It was used for covalent coupling of BM13.505 to bovine serum albumin, a macromolecular carrier. Inhibitory effects of free and macromolecular bound BM13.505 on aggregatory properties of U46619-stimulated platelets were measured and compared to TXA2 generation in platelets, as determined by TXB2 radioimmuno assay. No inhibitory effects of free and macromolecular-bound BM13.505 on ADP- or thrombin-induced platelet aggregation were observed. Equimolar concentrations of free or macromolecular bound BM13.505 inhibited U46619-induced platelet aggregation and TXA2 generation with equal potency. IC50-values for platelet aggregation inhibition by free and macromolecular bound BM13.505 were 64 nM and 96 nM respectively. It appears that the TXA2 receptor ligand binding site is located close to the outer membrane surface of platelets. Interaction of macromolecular bound BM13.505 with the platelet thromboxane receptor does not depend on the availability of the free carboxyl residue in BM13.505. The method for coupling a TXA2 receptor antagonist to a macromolecule will aid in constructing probes for the localization and characterization of the TXA2 receptor.  相似文献   

14.
Formation of prostaglandin D2 (PGD2) during the aggregation of platelets was determined, employing a specific bioassay. PGD2 was synthesized in human platelet rich plasma (PRP) in response to thrombin, collagen and epinephrine. Indomethacin pretreatment abolished the biosynthesis of PGD2. When thrombin treated PRP was incubated for different periods of time and denatured in the presence of SnCl2 to prevent the formation of PGD2 from endoperoxides during the extraction procedure, PGD2 formation was noted within the first minute of incubation and reached a peak level after 4 minutes. PGD2 from thrombin stimulated PRP was conclusively identified by gas chromatography-mass spectrometry.The formation of PGD2 during platelet aggregation could represent a mechanism of feedback inhibition of aggregation.  相似文献   

15.
A newly synthesized 9α-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26,536, (8(R)9(S)11(R)12(S)-9α-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 μ . SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9α-homo-9-, 11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 μ . SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 μ . Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

16.
An antagonist specific for the thrombin receptor is expected to be a remedy for thrombosis. Structure-activity studies of thrombin receptor-tethered ligand SFLLRNP have revealed the importance of the Phe-2-phenyl group in receptor recognition and the replacement of the Phe-2 by para-fluorophenylalanine [(p-F)Phe] was found to enhance its activity [Nose, T. et al. (1993) Biochem. Biophys. Res. Commun. 193, 694-699]. In order to obtain a small sized antagonist, a series of (p-F)Phe derivatives was designed and synthesized novel structural elements essential for receptor interactions being introduced at both the N and C-termini. beta-Mercaptopropionyl (betaMp) or its derivative activated by S-3-nitro-2-pyridinesulphenyl (Npys) was introduced at the N-terminus, and phenylmethyl amines were coupled to the C-terminus. All compounds were inactive when assayed for human platelet aggregation, indicating that they are not agonists. beta-Mercaptopropionyl derivatives were also inactive as antagonists. However, Npys-containing analogs were found to inhibit the agonist activity of SFLLRNP. In particular, SNpys-betaMp-(p-F)Phe-NH-R [R = -CH(C6H5)2 and -CH2-CH-(C6H5)2] potently suppressed platelet aggregation. The results suggested that (p-F)Phe can be used as a structural core to construct an effective antagonist conformation.  相似文献   

17.
trans-2,5-Bis(3,4,5-trimethoxyphenyl)tetrahydrofuran (L-652,731) is found to be a potent and orally active platelet activating factor (PAF)-specific and competitive receptor antagonist. It potently inhibits [3H]PAF (1 nM) binding to receptor sites on rabbit platelet membranes with an ED50 of 2 X 10(-8) M under the assay condition without the addition of mono- or divalent cations. In a comparative study, it is more potent than CV-3988, kadsurenone, and ginkgolide B as a receptor antagonist. The equilibrium dissociation constants (KB) of L-652,731 obtained either from the inhibition of receptor binding or from the inhibition of PAF-induced aggregation of gel-filtered rabbit platelet are 2.7 X 10(-8) and 2.1 X 10(-8) M, respectively. The agreement of these KB determinations based on receptor and cellular function suggests that L-652,731 does not inhibit other steps following PAF-receptor binding. L-652,731 does not antagonize the binding of several radioligands to their respective receptor. It shows no inhibitory effect on platelet aggregation induced by other aggregating agents including thrombin, collagen, A-23187, arachidonic acid, epinephrine, and ADP. L-652,731 is orally active; it inhibits PAF-induced rat cutaneous vascular permeability with an ED50 of 30 mg/kg orally. Significant inhibitory results of L-652,731 suggest that PAF may be partially involved in cutaneous vascular permeability induced by histamine and bradykinin.  相似文献   

18.
Inhibition of calpain blocks platelet secretion, aggregation, and spreading   总被引:8,自引:0,他引:8  
Previous studies have indicated that the Ca(2+)-dependent protease, calpain, is activated in platelets within 30-60 s of thrombin stimulation, but specific roles of calpain in platelets remain to be identified. To directly test the functions of calpain during platelet activation, a novel strategy was developed for introducing calpain's specific biological inhibitor, calpastatin, into platelets prior to activation. This method involves treatment of platelets with a fusion peptide, calpastat, consisting of the cell-penetrating signal sequence from Kaposi's fibroblast growth factor connected to a calpain-inhibiting consensus sequence derived from calpastatin. Calpastat specifically inhibits thrombin peptide (SFLLR)-induced alpha-granule secretion (IC(50) = 20 microM) during the first 30 s of activation, thrombin-induced platelet aggregation (IC(50) = 50 microM), and platelet spreading on glass surfaces (IC(50) = 34 microM). Calpastat-Ala, a mutant peptide in which alanine is substituted at conserved calpastatin residues, lacks calpain inhibitory activity and fails to inhibit secretion, aggregation, or spreading. The peptidyl calpain inhibitors calpeptin, MDL 28,170 (MDL) and E64d also inhibit secretion, aggregation and spreading, but require 3-10-fold higher concentrations than calpastat for biological activity. Together, these findings demonstrate that calpain regulates platelet secretion, aggregation, and spreading and indicate that calpain plays an earlier role in platelet activation following thrombin receptor stimulation than had been previously detected.  相似文献   

19.
Sarpogrelate, a specific 5-HT2A receptor antagonist is reported to produce a number of beneficial cardiovascular effects in diabetes mellitus. In the present investigation we have studied the effects of sarpogrelate on 5-HT receptors in heart and platelets in streptozotocin (STZ)-diabetic rats. Diabetes was induced by a single tail vein injection of STZ (45 mg/kg) and sarpogrelate (1 mg/kg, i.p.) was administered daily for 6 weeks. Injection of STZ produced significant loss of body weight, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hypertension and bradycardia. Treatment with sarpogrelate significantly lowered fasting glucose levels with corresponding increase in insulin levels. It also significantly prevented STZ-induced polydypsia, hyperphagia, hypertension, and bradycardia but not the loss of body weight. 5-HT produced dose-dependent positive inotropic effect that was found to be decreased significantly in STZ-diabetic rats. Hearts obtained from sarpogrelate treated diabetic rats did not show any decrease in responsiveness to 5-HT. Relative platelet aggregation per se was found to be higher in STZ-diabetic rats as compared to control and this was significantly prevented by sarpogrelate treatment. 5-HT produced a dose-dependent increase in platelet aggregation in non-diabetic and sarpogrelate treated diabetic rats. However, 5-HT failed to produce any increase in platelet aggregation in untreated diabetic rats. Our data suggest that STZ-induced diabetes may produce down-regulation of cardiac 5-HT2A receptors and increased platelet aggregation. Treatment with sarpogrelate seems to prevent STZ-induced down-regulation of 5-HT receptors and increase in platelet activity in diabetic rats.  相似文献   

20.
Methods for the evaluation of competitive interactions at receptors associated with platelet activation and inhibition using aggregometry of human PRP have been developed. The evidence supports the suggestion that PGE1 and PGI2 share a common receptor for inhibition of platelet reactivity, but only a portion (if any) of the aggregation stimulation associated with PGE2 is the result of PGE2 binding (without efficacy) to this receptor. PGE2 (@.3–20 μ ) is an effective antagonist of PGE1, PGI2, producing a shift of about one order of magnitude in the IC50-values obtained from complete aggregation inhibition dose response curves. The antagonism of PGD2 inhibition is particularly notable, 80 n PGE2 levels are detectable. This and other actions of PGE2 indicate another platelet receptor for PGE2. PGE1 acts at both the PGE2 and PGI2 receptor. Other substances showing PGI2-like actions only at high doses (1–30 μ ), display additive responses with PGI2 indicative of decreased affinity for the I2/E1 receptor and the absence of PGE2-like aggregation stimulation activity.PGI2 methyl ester has intrinsic inhibitory action not associated with in situ ester hydrolysis. The methyl ester is dissaggregatory showing particular specificity for inhibition of release and second wave aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号