首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic mechanism, electron transfer coupled to proton pumping, of heme-copper oxidases is not yet fully understood. Microsecond freeze-hyperquenching single turnover experiments were carried out with fully reduced cytochrome aa(3) reacting with O(2) between 83 micros and 6 ms. Trapped intermediates were analyzed by low temperature UV-visible, X-band, and Q-band EPR spectroscopy, enabling determination of the oxidation-reduction kinetics of Cu(A), heme a, heme a(3), and of a recently detected tryptophan radical (Wiertz, F. G. M., Richter, O. M. H., Cherepanov, A. V., MacMillan, F., Ludwig, B., and de Vries, S. (2004) FEBS Lett. 575, 127-130). Cu(B) and heme a(3) were EPR silent during all stages of the reaction. Cu(A) and heme a are in electronic equilibrium acting as a redox pair. The reduction potential of Cu(A) is 4.5 mV lower than that of heme a. Both redox groups are oxidized in two phases with apparent half-lives of 57 micros and 1.2 ms together donating a single electron to the binuclear center in each phase. The formation of the heme a(3) oxoferryl species P(R) (maxima at 430 nm and 606 nm) was completed in approximately 130 micros, similar to the first oxidation phase of Cu(A) and heme a. The intermediate F (absorbance maximum at 571 nm) is formed from P(R) and decays to a hitherto undetected intermediate named F(W)(*). F(W)(*) harbors a tryptophan radical, identified by Q-band EPR spectroscopy as the tryptophan neutral radical of the strictly conserved Trp-272 (Trp-272(*)). The Trp-272(*) populates to 4-5% due to its relatively low rate of formation (t((1/2)) = 1.2 ms) and rapid rate of breakdown (t((1/2)) = 60 micros), which represents electron transfer from Cu(A)/heme a to Trp-272(*). The formation of the Trp-272(*) constitutes the major rate-determining step of the catalytic cycle. Our findings show that Trp-272 is a redox-active residue and is in this respect on an equal par to the metallocenters of the cytochrome c oxidase. Trp-272 is the direct reductant either to the heme a(3) oxoferryl species or to Cu (2+)(B). The potential role of Trp-272 in proton pumping is discussed.  相似文献   

2.
Cytochrome bd-type ubiquinol oxidase contains two hemes b (b(558) and b(595)) and one heme d as the redox metal centers. To clarify the structure of the reaction center, we analyzed Escherichia coli cytochrome bd by visible absorption, EPR and FTIR spectroscopies using azide and cyanide as monitoring probes for the exogenous ligand binding site. Azide-binding caused the appearance of a new EPR low-spin signal characteristic of ferric iron-chlorin-azide species and a new visible absorption band at 647 nm. However, the bound azide ((14)N(3)) anti-symmetric stretching infrared band (2, 010.5 cm(-1)) showed anomalies upon (15)N-substitutions, indicating interactions with surrounding protein residues or heme b(595) in close proximity. The spectral changes upon cyanide-binding in the visible region were typical of those observed for ferric iron-chlorin species with diol substituents in macrocycles. However, we found no indication of a low-spin EPR signal corresponding to the ferric iron-chlorin-cyanide complexes. Instead, derivative-shaped signals at g = 3.19 and g = 7.15, which could arise from the heme d(Fe(3+))-CN-heme b(595)(Fe(3+)) moiety, were observed. Further, after the addition of cyanide, a part of ferric heme d showed the rhombic high-spin signal that coexisted with the g(z) = 2.85 signal ascribed to the minor heme b(595)-CN species. This indicates strong steric hindrance of cyanide-binding to ferric heme d with the bound cyanide at ferric heme b(595).  相似文献   

3.
Amino acid sequence data have revealed that the bo-type ubiquinol oxidase from Escherichia coli is closely related to the eukaryotic aa3-type cytochrome c oxidases. In the cytochrome c oxidases, the reduction of oxygen to water occurs at a binuclear center comprised of heme a3 and Cu(B). In this paper, Fourier transform infrared (FTIR) spectroscopy of CO bound to the enzyme is used to directly demonstrate that the E. coli bo-type ubiquinol oxidase also contains a heme-copper binuclear center. Photolysis of CO ligated to heme o at low temperatures (e.g., 30 K) results in formation of a CO-Cu complex, showing that there is a heme-Cu(B) binuclear center similar to that formed by heme a3 and Cu(B) in the eukaryotic oxidase. It is further demonstrated that the cyoE gene product is required for the correct assembly of this binuclear center, although this polypeptide is not required as a component of the active enzyme in vitro. The cyoE gene product is homologous to COX10, a nuclear gene product from Saccharomyces cerevisiae, which is required for the assembly of yeast cytochrome c oxidase. Deletion of the cyoE gene results in an inactive quinol oxidase that is, however, assembled in the membrane. FTIR analysis of bound CO shows that Cu(B) is present in this mutant but that the heme-Cu(B) binuclear center is abnormal. Analysis of the heme content of the membrane suggests that the cyoE deletion results in the insertion of heme B (protoheme IX) in the binuclear center, rather than heme O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Zhao X  Nilges MJ  Lu Y 《Biochemistry》2005,44(17):6559-6564
The effects of chloride on the redox properties of an engineered binuclear heme-copper center in myoglobin (Cu(B)Mb) were studied by UV-vis spectroelectrochemistry and EPR spectroscopy. A low-spin heme Fe(III)-Cu(I) intermediate was observed during the redox titration of Cu(B)Mb only in the presence of both Cu(II) and chloride. Upon the first electron transfer to the Cu(B) center, one of the His ligands of Cu(B) center dissociates and coordinates to the heme iron, forming a six-coordinate low-spin ferric heme center and a reduced Cu(B) center. The second electron transfer reduces the ferric heme and causes the release of the coordinated His ligand. Thus, the fully reduced state of the heme-copper center contains a five-coordinate ferrous heme and a reduced Cu(B) center, ready for O(2) binding and reduction to water to occur. In the absence of a chloride ion, formation of the low-spin heme species was not observed. These redox reactions are completely reversible. These results indicate that binding of chloride to the Cu(B) center can induce redox-dependent structural changes, and the bound chloride and hydroxide in the heme-copper center may play different roles in the redox-linked enzymatic reactions of heme-copper oxidases, probably because of their different binding affinity to the copper center and the relatively high concentration of chloride under physiological conditions.  相似文献   

5.
The cytochrome-bo quinol oxidase of Escherichia coli contains a high-spin b-type heme (cytochrome o), a low-spin b-type heme (cytochrome b) and copper. The EPR signal from cytochrome o is axial high spin and when titrated potentiometrically gives a bell-shaped curve. The low-potential side of this curve (Em7 approx. 160 mV) corresponds to the reduction/oxidation of the cytochrome. The high-potential side (Em7 approx. 350 mV) is proposed to be due to reduction/oxidation of a copper center; in the CuII form tight cytochrome o-copper spin coupling results in a net even spin system and loss of the EPR spectrum. Optical spectra of the alpha-bands of the reduced cytochromes at 77 K show that cytochrome b has its maxima at 564 nm when cytochrome o is oxidized but that this shifts to 561 nm when cytochrome o (max. 555 nm) is reduced. Both a heme-copper (cytochrome o-CuII) and a heme-heme (cytochrome o-cytochrome b) interaction are indicated in this quinol oxidase. These results indicate that cytochrome-bo quinol oxidase has a binuclear heme-copper catalytic site and suggest striking structural similarity to subunit I of the cytochrome aa3 system.  相似文献   

6.
The spin state of the heme in superoxide (O(2)(.)(-))-producing cytochrome b(558) purified from pig neutrophils was examined by means of room-temperature magnetic circular dichroism (MCD) under physiological conditions. Cytochrome b(558) with varying amounts of low-spin and high-spin heme was prepared by either pH adjustment or heat treatment, and the O(2)(.)(-)-forming activity in a cell-free system was found to correlate with the low-spin heme content. The possibility that the O(2)(.)(-)-forming activity results from a transient high-spin ferric heme form that is induced during activation by anionic amphophils has also been investigated. EPR spectra of cytochrome b(558) activated by either arachidonic acid or myristic acid, showed that a transient high-spin ferric species accounting for approximately 50% of the heme appeared in the presence of arachidonic acid, but not in the presence of myristic acid. Hence the appearance of a transient high-spin ferric heme species on activation with an amphophil does not afford a common activation mechanism in the NADPH oxidase system. The EPR results for cytochrome b(558) activated with arachidonic acid showed that the transient high-spin ferric heme can bind cyanide. However, the high-spin ferric heme does not contribute to the O(2)(.)(-) production of cytochrome b(558) in cell-free assays in the presence of cyanide.  相似文献   

7.
Two-subunit SoxB-type cytochrome c oxidase in Bacillus stearothermophilus was over-produced, purified, and examined for its active site structures by electron paramagnetic resonance (EPR) and resonance Raman (RR) spectroscopies. This is cytochrome bo3 oxidase containing heme B at the low-spin heme site and heme O at the high-spin heme site of the binuclear center. EPR spectra of the enzyme in the oxidized form indicated that structures of the high-spin heme O and the low-spin heme B were similar to those of SoxM-type oxidases based on the signals at g=6.1, and g=3.04. However, the EPR signals from the CuA center and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin (nu3 = 1472 cm(-1)), and heme B was in a 6-coordinated low-spin (nu3 = 1500 cm(-1)) state. The Fe2+-His stretching mode was observed at 211 cm(-1), indicating that the Fe2+-His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe2+-CO stretching and Fe2+-C-O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome bo3 from those of SoxM-type enzymes.  相似文献   

8.
Nitric-oxide reductase (NOR) of a denitrifying bacterium catalyzes NO reduction to N(2)O at the binuclear catalytic center consisting of high spin heme b(3) and non-heme Fe(B). The structures of the reaction intermediates in the single turnover of the NO reduction by NOR from Pseudomonas aeruginosa were investigated using optical absorption and EPR spectroscopies combined with an originally designed freeze-quench device. In the EPR spectrum of the sample, in which the fully reduced NOR was mixed with an NO solution and quenched at 0.5 ms after the mixing, two characteristic signals for the ferrous Fe(B)-NO and the penta-coordinated ferrous heme b(3)-NO species were observed. The CO inhibition of its formation indicated that two NO molecules were simultaneously distributed into the two irons of the same binuclear center of the enzyme in this state. The time- and temperature-dependent EPR spectral changes indicated that the species that appeared at 0.5 ms is a transient reaction intermediate prior to the N(2)O formation, in good agreement with the so-called "trans" mechanism. It was also found that the final state of the enzyme in the single turnover cycle is the fully oxidized state, in which the mu-oxo-bridged ligand is absent between the two irons of its binuclear center, unlike the resting form of NOR as isolated. On the basis of these present findings, we propose a newly developed mechanism for the NO reduction reaction conducted by NOR.  相似文献   

9.
The membrane-bound NO reductase from the hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum was purified to homogeneity. The enzyme displays MQH2:NO oxidoreductase (qNOR) activity, consists of a single subunit, and contains heme and nonheme iron in a 2:1 ratio. The combined results of EPR, resonance Raman, and UV-visible spectroscopy show that one of the hemes is bis-His-coordinated low spin (gz = 3.015; gy = 2.226; gx = 1.45), whereas the other heme adopts a high spin configuration. The enzyme also contains one nonheme iron center, which in the oxidized enzyme is antiferromagnetically coupled to the high spin heme. This binuclear high spin heme/nonheme iron center is EPR-silent and the site of NO reduction. The reduced high spin heme is bound to a neutral histidine and can bind CO to form of a low spin complex. The oxidized high spin heme binds NO, yielding a ferric nitrosyl complex, the intermediate causing the commonly found substrate inhibition in NO reductases (Ki(NO) = 7 microm). The qNOR as present in the membrane is, in contrast to the purified enzyme, quite thermostable, incubation at 100 degrees C for 86 min leading to 50% inhibition. The pure enzyme lacks heme b and instead contains stoichiometric amounts of hemes Op1 and Op2, ethenylgeranylgeranyl and hydroxyethylgeranylgeranyl derivatives of heme b, respectively. The archaeal qNOR is the first example of a NO reductase, which contains modified hemes reminiscent of cytochrome bo3 and aa3 oxidases. This report is the first describing the purification and structural and spectroscopic properties of a thermostable NO reductase.  相似文献   

10.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

11.
To probe the functional role of a bound ubiquinone-8 in cytochrome bo-type ubiquinol oxidase from Escherichia coli, we examined reactions with ubiquinol-1 and dioxygen. Stopped-flow studies showed that anaerobic reduction of the wild-type and the bound ubiquinone-free (DeltaUbiA) enzymes with ubiquinol-1 immediately takes place with four kinetic phases. Replacement of the bound ubiquinone with 2,6-dibromo-4-cyanophenol (PC32) suppressed the anaerobic reduction of the hemes with ubiquinol-1 by eliminating the fast phase. Flow-flash studies in the reaction of the fully reduced enzyme with dioxygen showed that the heme b-to-heme o electron transfer occurs with a rate constant of approximately 1x10(4) s(-1) in all three preparations. These results support our previous proposal that the bound ubiquinone is involved in facile oxidation of substrates in subunit II and subsequent intramolecular electron transfer to low-spin heme b in subunit I.  相似文献   

12.
The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.  相似文献   

13.
Yeast damage-associated response protein (Dap1p) and mouse progesterone receptor membrane component-1 protein (mPGRMC1p) belong to a highly conserved class of putative membrane-associated progesterone binding proteins (MAPR), with Dap1p and inner zone antigen (IZA), the rat homologue of mPGRMC1p, recently being reported to bind heme. While primary structure analysis reveals similarities to the cytochrome b(5) motif, neither of the two axial histidines responsible for ligation to the heme is present in any of the MAPR proteins. In this paper, EPR, MCD, CD, UV-vis, and general biochemical methods have been used to characterize the nature of heme binding in both Dap1p and a His-tagged, membrane anchor-truncated mPGRMC1p. As isolated, Dap1p is a tetramer which can be converted to a dimer upon addition of 150 mM salt. The heme is noncovalently attached, with a maximal, in vitro, heme loading of approximately 30%, for both proteins. CD and fluorescence spectroscopies indicate a well-ordered structure, suggesting the low level of heme loading is probably not due to improperly folded protein. EPR confirmed a five-coordinate, high-spin, ferric resting state for both proteins, indicating one axial amino acid ligand, in contrast to the six-coordinate, low-spin, ferric state of cytochrome b(5). The MCD spectrum confirmed this conclusion for Dap1p and indicated the axial ligand is most likely a tyrosine and not a histidine, or a cysteine; however, an aspartic acid residue could not be conclusively ruled out. Potential axial ligands, which are conserved in all MAPRs, were mutated (Y78F, D118A, and Y138F) and purified to homogeneity. The Y78F and D118A mutants were found to bind heme; however, Y138F did not. This result is consistent with the MCD data and indicates that Tyr138 is most likely the axial ligand to the heme in Dap1p.  相似文献   

14.
The reaction of cytochrome c oxidase with hydrogen peroxide has been of great value in generating and characterizing oxygenated species of the enzyme that are identical or similar to those formed during turnover of the enzyme with dioxygen. Most previous studies have utilized relatively low peroxide concentrations (millimolar range). In the current work, these studies have been extended to the examination of the kinetics of the single turnover of the fully reduced enzyme using much higher concentrations of peroxide to avoid limitations by the bimolecular reaction. The flow-flash method is used, in which laser photolysis of the CO adduct of the fully reduced enzyme initiates the reaction following rapid mixing of the enzyme with peroxide, and the reaction is monitored by observing the absorbance changes due to the heme components of the enzyme. The following reaction sequence is deduced from the data. (1) The initial product of the reaction appears to be heme a(3) oxoferryl (Fe(4+)=O(2)(-) + H(2)O). Since the conversion of ferrous to ferryl heme a(3) (Fe(2+) to Fe(4+)) is sufficient for this reaction, presumably Cu(B) remains reduced in the product, along with Cu(A) and heme a. (2) The second phase of the reaction is an internal rearrangement of electrons and protons in which the heme a(3) oxoferryl is reduced to ferric hydroxide (Fe(3+)OH(-)). In about 40% of the population, the electron comes from heme a, and in the remaining 60% of the population, Cu(B) is oxidized. This step has a time constant of about 65 micros. (3) The third apparent phase of the reaction includes two parallel reactions. The population of the enzyme with an electron in the binuclear center reacts with a second molecule of peroxide, forming compound F. The population of the enzyme with the two electrons on heme a and Cu(A) must first transfer an electron to the binuclear center, followed by reaction with a second molecule of peroxide, also yielding compound F. In each of these reaction pathways, the reaction time is 100-200 micros, i.e., much faster than the rate of reaction of peroxide with the fully oxidized enzyme. Thus, hydrogen peroxide is an efficient trap for a single electron in the binuclear center. (4) Compound F is then reduced by the final available electron, again from heme a, at the same rate as observed for the reduction of compound F formed during the reaction of the fully reduced oxidase with dioxygen. The product is the fully oxidized enzyme (heme a(3) Fe(3+)OH(-)), which reacts with a third molecule of hydrogen peroxide, forming compound P. The rate of this final reaction step saturates at high concentrations of peroxide (V(max) = 250 s(-)(1), K(m) = 350 mM). The data indicate a reaction mechanism for the steady-state peroxidase activity of the enzyme which, at pH 7.5, proceeds via the single-electron reduction of the binuclear center followed by reaction with peroxide to form compound F directly, without forming compound P. Peroxide is an efficient trap for the one-electron-reduced state of the binuclear center. The results also suggest that the reaction of hydrogen peroxide to the fully oxidized enzyme may be limited by the presence of hydroxide associated with the heme a(3) ferric species. The reaction of hydrogen peroxide with heme a(3) is very substantially accelerated by the availability of an electron on heme a, which is presumably transferred to the binuclear center concomitant with a proton that can convert the hydroxide to water, which is readily displaced.  相似文献   

15.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   

16.
Kobayashi K  Tagawa S  Mogi T 《Biochemistry》2000,39(50):15620-15625
To elucidate a unique mechanism for the quinol oxidation in the Escherichia coli cytochrome bo, we applied pulse radiolysis technique to the wild-type enzyme with or without a single bound ubiquinone-8 at the high-affinity quinone binding site (Q(H)), using N-methylnicotinamide (NMA) as an electron mediator. With the ubiquinone bound enzyme, the reduction of the oxidase occurred in two phases as judged from kinetic difference spectra. In the faster phase, the transient species with an absorption maximum at 440 nm, a characteristic of the formation of ubisemiquinone anion radical, appeared within 10 micros after pulse radiolysis. In the slower phase, a decrease of absorption at 440 nm was accompanied by an increase of absorption at 428 and 561 nm, characteristic of the reduced form. In contrast, with the bound ubiquinone-8-free wild-type enzyme, NMA radicals directly reduced hemes b and o, though the reduction yield was low. These results indicate that a pathway for an intramolecular electron transfer from ubisemiquinone anion radical at the Q(H) site to heme b exists in cytochrome bo. The first-order rate constant of this process was calculated to be 1.5 x 10(3) s(-1) and is comparable to a turnover rate for ubiquinol-1. The rate constant for the intramolecular electron transfer decreased considerably with increasing pH, though the yields of the formation of ubisemiquinone anion radical and the subsequent reduction of the hemes were not affected. The pH profile was tightly linked to the stability of the bound ubisemiquinone in cytochrome bo [Ingledew, W. J., Ohnishi, T., and Salerno, J. C. (1995) Eur. J. Biochem. 227, 903-908], indicating that electron transfer from the bound ubisemiquinone at the Q(H) site to the hemes slows down at the alkaline pH where the bound ubisemiquinone can be stabilized. These findings are consistent with our previous proposal that the bound ubiquinone at the Q(H) site mediates electron transfer from the low-affinity quinol oxidation site in subunit II to low-spin heme b in subunit I.  相似文献   

17.
Cytochromes bo and bd are structurally unrelated terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli. The high-spin heme o-CuB binuclear center serves as the dioxygen reduction site for cytochrome bo, and the heme b595-heme d binuclear center for cytochrome bd. CuB coordinates three histidine ligands and serves as a transient ligand binding site en route to high-spin heme o one-electron donor to the oxy intermediate, and a binding site for bridging ligands like cyanide. In addition, it can protect the dioxygen reduction site through binding of a peroxide ion in the resting state, and connects directly or indirectly Tyr288 and Glu286 to carry out redox-driven proton pumping in the catalytic cycle. Contrary, heme b595 of cytochrome bd participate a similar role to CuB in ligand binding and dioxygen reduction but cannot perform such versatile roles because of its rigid structure.  相似文献   

18.
From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and M?ssbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.  相似文献   

19.
Structures of reaction intermediates of bovine cytochrome c oxidase (CcO) in the reactions of its fully reduced form with O2 and fully oxidized form with H2O2 were investigated with time-resolved resonance Raman (RR) and infrared spectroscopy. Six oxygen-associated RR bands were observed for the reaction of CcO with O2. The isotope shifts for an asymmetrically labeled dioxygen, (16)O(18)O, has established that the primary intermediate of cytochrome a3 is an end-on type dioxygen adduct and the subsequent intermediate (P) is an oxoiron species with Fe=O stretch (nu(Fe=O)) at 804/764 cm(-1) for (16)O2/(18)O2 derivatives, although it had been long postulated to be a peroxy species. The P intermediate is converted to the F intermediate with nu(Fe=O) at 785/751 cm(-1) and then to a ferric hydroxy species with nu(Fe-OH) at 450/425 cm(-1) (443/417 cm(-1) in D2O). The rate of reaction from P to F intermediates is significantly slower in D2O than in H2O. The reaction of oxidized CcO with H2O2 yields the same oxygen isotope-sensitive bands as those of P and F, indicating the identity of intermediates. Time-resolved infrared spectroscopy revealed that deprotonation of carboxylic acid side chain takes place upon deligation of a ligand from heme a3. UV RR spectrum gave a prominent band due to cis C=C stretch of phospholipids tightly bound to purified CcO.  相似文献   

20.
Membrane-bound heme-copper oxidases catalyze the reduction of O(2) to water. Part of the free energy associated with this process is used to pump protons across the membrane. The O(2) reduction reaction results in formation of high-pK(a) protonatable groups at the catalytic site. The free energy associated with protonation of these groups is used for proton pumping. One of these protonatable groups is OH(-), coordinated to the heme and Cu(B) at the catalytic site. Here we present results from EPR experiments on the Rhodobacter sphaeroides cytochrome c oxidase, which show that at high pH (9) approximately 50% of oxidized heme a(3) is hydroxide-ligated, while at low pH (6.5), no hydroxide is bound to heme a(3). The kinetics of hydroxide binding to heme a(3) were investigated after dissociation of CO from heme a(3) in the enzyme in which the heme a(3)-Cu(B) center was reduced while the remaining redox sites were oxidized. The dissociation of CO results in a decrease of the midpoint potential of heme a(3), which results in electron transfer (tau approximately equal 3 micros) from heme a(3) to heme a in approximately 100% of the enzyme population. At pH >7.5, the electron transfer is followed by proton release from a H(2)O molecule to the bulk solution (tau approximately equal 2 ms at pH 9). This reaction is also associated with absorbance changes of heme a(3), which on the basis of the results from the EPR experiments are attributed to formation of hydroxide-ligated heme a(3). The OH(-) bound to heme a(3) under equilibrium conditions at high pH is also formed transiently after O(2) reduction at low pH. It is proposed that the free energy associated with electron transfer to the binuclear center and protonation of this OH(-) upon reduction of the recently oxidized enzyme provides the driving force for the pumping of one proton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号