首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary The cDNA coding for the b-32 protein, an albumin expressed in maize endosperm cells under the control of the O2 and O6 loci, has been cloned and the complete amino acid sequence of the protein derived. A lambda gt11 cDNA library from mRNA of immature maize endosperm was screened for the expression of the b-32 protein using antibodies against the purified protein. One of the positive clones obtained was used to isolate a full-length cDNA clone. By Northern analysis, the size of the b-32 mRNA was estimated to be 1.2 kb. Hybrid-selected translation assays show that the message codes for a protein with an apparent molecular weight of 30–35 kDa. The nucleotide sequence shows that several internal repeats are present. The protein has a length of 303 amino acid residues (mol. wt. 32430 dalton) and its sequence shows the following features: no signal peptide is observable; it contains seven tryptophan residues, an amino acid absent in maize storage proteins; polar and hydrophobic residues are spread along the sequence; several pairs of basic residues are present in the N-terminal region; the secondary structure allows the prediction of two structural domains for the b-32 protein that would fold up giving rise to a globular shape. The cloning of this gene may help in understanding the role of the O2 and O6 loci in regulating the deposition of zein, the major storage protein of maize endosperm.  相似文献   

4.
Quality Protein Maize (QPM) is a name given to genetically modified opaque-2 maize with hard endosperm. The opaque-2 mutation conditions a reduction in the amount of zein seed storage protein; zeins are deficient in the essential amino acids lysine and tryptophan, and mutant seed have a higher nutritional value. To utilize the potential of opaque-2 maize, elite inbreds can be converted to o2/o2 forms and subsequently to hard endosperm opaque-2. Since opaque-2 is recessive and endosperm specific, conventional backcross procedures to convert elite inbreds to opaque-2 forms are inefficient. To alleviate this problem, a marker-assisted selection procedure was developed for the Texas A&M University Quality Protein Maize breeding program. Hybridization of an O2 cDNA probe to blots of DNA from plants carrying O2 and o2 alleles showed that restriction fragment length polymorphisms (RFLPs) exist between the W64A o2 allele and O2 alleles of Mo17 and TX5855 inbred lines. To identify the opaque2 genotypes in segregating populations, an RFLP marker assay combining the O2 cDNA probe and HindIII-digestion of genomic DNA was developed. The effectiveness of the O2 RFLP marker assay was tested under field conditions using F2 and backcross populations of several hard endosperm opaque-2 lines. A comparison of the genotypes identified by RFLP analysis with the seed phenotypes of the next generation indicated that this procedure is accurate and can be used for identifying O2/O2, O2/o2, and o2/o2 genotypes of individual juvenile plants in breeding populations.  相似文献   

5.
C. R. Lending 《Protoplasma》1996,195(1-4):68-77
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. Protein body formation in normal genotypes occurs via a sequential deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about l m. In the endosperm mutantopaque-2 the level of one zein class is reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype displayed in normal genotypes, presumably due to the decrease in total zein protein at the time of desiccation. Previous microscopic examination ofopaque-2 protein bodies at 22 DAP (days after pollination) showed that the protein bodies were morphologically similar to those of normal genotypes. However, the endosperm ofopaque-2 maize at 14 DAP contains tubular arrays within the rough endoplasmic reticulum. These tubular arrays are tightly associated with the developing protein bodies. Long strands of tubules, sometimes 10 m in length, are observed in the endosperm, and partially formed protein bodies often seem to be forming directly from these tubular arrays. No immunostaining is associated with this tubular material when any of the anti-zein antibodies are used.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

6.
7.
8.
Maize endosperm was homogenized in a cytoskeleton-stabilizing buffer, filtered and layered on gradients of 20–80% sucrose and analyzed by monitoring their UV absorbance. A major peak of UV-light absorbing material was detected on the gradient, at about 60–65% sucrose (density of approximately 1.3 g·ml−1). Biochemical, fluorescence microscopic, and immunoblot analyses of this peak showed that it consisted of protein bodies associated with actin, membranes, and RNA (ribosomes). Seeds of wild type and opaque-2 mutant were then homogenized, the homogenate was modified using detergents and/or cytoskeleton-disrupting agents, and centrifuged on sucrose gradients. In wild type maize endosperm, detergent treatment caused the major peak (protein bodies) to increase in density so that they sediment further down the gradient. However, in opaque-2 the protein bodies formed a broader, but smaller peak which, upon treatment with detergent, generated protein bodies which pelleted to the bottom of the gradient. Analysis of gradient fractions by gel electrophoresis and immuno-blotting showed that both the wild type and the mutant had cytoskeleton proteins in the upper regions (soluble, non-polymerized microfilaments and microtubules) as well as in the peak regions. Comparisons of both the UV-absorbance profiles and the immunoblot data suggest that the protein bodies from the two maize types associate differently with the membranes and the cytoskeleton.  相似文献   

9.
Polysome preparations obtained from opaque-2 and normal maize endosperms during development did not show any significant difference in sedimentation coefficient or nucleotide composition. The pattern of incorporation in vitro of lysine and leucine, however, differed quite distinctly in these two preparations. During early stages of maturity the polysomes from opaque-2 incorporated substantially more lysine and less leucine as compared with those from normal maize. Although the trend was reversed at 25 days post-pollination, this did not result in any significant zein accumulation since very little total protein was synthesized after that stage in opaque-2 maize endosperm. It is, therefore, suggested that the opaque-2 gene exerts a regulatory control on mRNA synthesis, required for zein formation at early stages of maturation.  相似文献   

10.
The lysin content in maize endosperm protein is considered to be one of the most important traits for determining the nutritional quality of food and feed. Improving the protein quality of the maize kernel depends principally on finding a mutant with a higher lysine content. Two high-lysine mutant lines with opaque endosperm, QCL3024 and QCL3021, were isolated from a self-cross population derived from Robertsons Mutator stocks. The gene controlling this mutation is temporarily termed opaque-16 (o16). In order to illuminate the genetic locus and effect of the o16 gene, two F2:3 populations, one developed from a cross between QCL3024 and QCL3010 (a wild type line) and another from a cross between Qi205 (opaque-2 line) and QCL3021, were created, and F3 seeds from the F2 plants in the two populations were evaluated for lysine content. The distributions of lysine content and tests for their normality indicate that the lysine content in the two populations is regulated by the major gene of o16 and genes of o2 and o16, respectively. Based on two data sets of the linkage maps of the F2 plant marker genotypes and the lysine content of F3 seeds originating from the two F2:3 populations, the o16 gene was located within 5 cM, at either 3 or 2.2 cM from umc1141 in the interval between umc1121 and umc1141 on the long arm of chromosome 8, depending on the recombination rate in the two populations as determined by composite interval mapping. According to the data of the F2:3 population constructed from the o2 and o16 lines, the double recessive mutant effect was analyzed. The average lysine content of the F3 o2o2o16o16 families identified by the umc1066 and umc1141 markers was approximately 30% higher than that of the F3 o2o2 and o16o16 families, respectively. The lysine content of seven F3 families among nine F3 double recessive mutant families showed different increments, with an average increase of some 6% compared with that of the maternal o2 line. The potential application of the o16 mutant for maize high-lysine breeding may be to combine it with the o2 mutant bearing modifier genes, thus obtaining a mutant with much higher lysine content. For the purpose of pyramiding the o16 with o2 genes, the availability of closely linked markers of the o16 and o2 loci will facilitate marker-assisted selection and greatly reduce breeding time and effort.  相似文献   

11.
12.
The maize locus, Opaque-2, controls the expression in developing endosperm of structural genes encoding a family of storage proteins, the 22 kd zeins, and an abundant albumin, termed b-32. It is shown that the promoter of the b-32 gene is activated in vivo in the presence of the O2 gene product and that the information necessary for this activation resides in a 440 bp DNA fragment containing five O2 binding sites (GATGAPyPuTGPu). Two of these sites are embedded in copies of the 'endosperm box', a motif thought to be involved in endosperm-specific expression, which is also represented in 22 kd zein promoters. The O2 protein is also shown to be capable of binding in vitro and activating in vivo, its own promoter.  相似文献   

13.
Summary This paper reports that the opaque-6 (o6) mutation of maize, which causes seedling lethality and interferes in the endosperm with the synthesis of zeins and b-32 protein, is a proline requiring mutant functionally allelic to proline-1 (pro-1). Furthermore, immunological studies on the b-32 content of ten independently originated o6 and pro-1 alleles demonstrated that four alleles contain an apparently normal b-32 protein while the others are either devoid of it or contain trace amounts of cross-reacting proteins of lower molecular weight.  相似文献   

14.
15.
Two zein proteins (Z1 and Z2) represent the majority of the protein synthesized during maize endosperm development. Undegraded membrane-bound polysomes isolated from normal maize synthesized these proteins when incubated in a cell-free protein-synthesizing system from wheat germ. The proteins synthesized in vitro were similar to authentic zein in ethanol solubility and electrophoretic mobility. Zein synthesis was associated with large size classes of membrane bound polysomes in normal maize.Membrane-bound polysomes isolated from developing kernels of opaque-2 mutant synthesized less total zein in vitro, and dramatically reduced incorporation into the Z1 component. The reduction in total zein corresponded to a 50% reduction in the level of membrane-bound polysomes in opaque-2, and the near absence of the large polysome size classes, which synthesized zein in normal maize. We concluded that the opaque-2 mutation results in a decreased "availability" of the zein mRNAs, reflected in a reduced level of membrane-bound polysomes.  相似文献   

16.
A comparative study of free amino acids and protein fractions of normal with a double mutant (su1 o2) was made, during endosperm development in segregating ears of a maize synthetic. Zein content showed striking differences in the two genotypes, being 7.7 and 6 times greater in the normal endosperm at 24 and 47 days after pollination respectively. This observed decrease in zein synthesis, coded by sugary-1/opaque-2 genes, causes an accumulation of alanine, glutamic and aspartic acids, glutamine and asparagine in the high lysine endosperm mutant.  相似文献   

17.
Heterogeneity of storage proteins in maize   总被引:1,自引:0,他引:1  
Righetti  P. G.  Gianazza  Elisabetta  Viotti  A.  Soave  C. 《Planta》1977,136(2):115-123
The extensive charge heterogeneity of maize (Zea mays L.) zeins observed in isoelectric focusing (IEF) (about 15 bands with pI's in the pH range 6–9) has been found to be independent of extraction procedures or of endosperm development. Zeins do not stain for glycoproteins and exhibit only one lipoprotein component, with pI 3, representing 3–5% of the total protein.Zeins are very resistant to in vitro deamidation, at both acidic and alkaline pH, at high temperatures, and for rather prolonged times. On the basis of the zein content in acidic and basic amino acids, and of the respective pI's exhibited in IEF (mostly in the pH range 7–8) it has been calculated that at least 90% of the glutamic and aspartic acids (52 residues out of a total of 190) are present as asparagine and glutamine.Amino acid analysis of zein fractions isolated by preparative IEF has demonstrated changes in the composition of 18 amino acid residues. However, since these changes affect only neutral and hydrophobic residues, it is concluded that the observed zein heterogeneity is partly based on in vivo deamidation of glutamine and asparagine and partly to spot mutations in some of the genes responsible for zein synthesis.Abbreviations A absorbance - Bis N,N-methylene bisacrylamide - IEF isoelectric focusing - 2-ME 2-meroaptoethanol - mol wt molecular weight - 62 opaque-2 - PAGE polyacrylamide gel electrophoresis - pI isoelectric point - PAS periodic acid-Schiff stain - SDS sodium dodecyl sulphate - ICA trichloroacetic acid - TEMED N,N,N,N-tetramethyl ethylene diamine - Z1 zein extracted with 55% isopropanol - Z2 zein extracted with 55% isopropanol and 0.6% 2-ME - Z 9.6 zein of mol wt 9600 - Z 13.5 zein of mol wt 13,500 - Z 21 zein of mol wt 21,000 - Z 23 zein of mol wt 23,000  相似文献   

18.
Summary In order to localize the genes coding for zein, the major storage protein of maize endosperm, zein 125I-mRNA and 3H-cDNA labelled at high specific activity were used for in situ hybridization on heterozygous interchanges and paracentric inversions of the KYS strain of Zea mays. The analysis of the diplotene-metaphase I microsporocytes indicated the presence of zein structural genes on the long arm of chromosomes 4 and 5, the short arm of chromosome 7 and the distal segment of the long arm of chromosome 10. The two hybridization sites on chromosomes 7 and 10 are found near opaque-2 and opaque-7 loci which are known to regulate zein synthesis. The present data are discussed in relation to results obtained by other authors using genetical mapping of zein genes.  相似文献   

19.
20.
Lysine-ketoglutarate reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses l-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and there-after decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibrium-ordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号