首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

2.
ZHU Hua 《Plant Diversity》2007,29(4):377-387
Xishuangbanna of southern Yunnan is a region of extremely interest to biologists and also a hotspot for biodiversity conservation . It is located in a transitional zone from tropical Southeast Asia to temperate East Asia biogeographically. The present paper reviewed vegetation types of Xishuangbanna and suggested a revised classification system based on theupdated study results over the last two decades . By combining physiognomic and floristic characteristics with ecological performances and habitats , the primary forest vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes , i. e. tropical seasonal rain forest in the lowlands and tropical montane rain forest on higher elevations. The tropical seasonal rain forest in this region shows similar forest profile and physiognomic characteristics to those of equatorial lowland rain forests and is a type of world tropical rain forest. Because of conspicuous similarity on floristic composition , the tropical seasonal rain forest in Xishuangbanna is a type of tropical Asian rain forest . However , since the tropical seasonal rain forest occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in maintaining some deciduous trees in the canopy layer , fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll . It is a type of semi-evergreen rain forest at the northern edge of the tropical zone . The tropical montane rain forest occurs in wet montane habitats and is similar to the lower montane rain forests in equatorial Asia in floristic composition and physiognomy . It is a variety of lower montane rain forests at the northern tropical edges of tropical rain forests . The tropical seasonal moist forest occurs on middle and upper limestone mountains and is similar to the tropical montane evergreen broad-leaved forest of the region in physiognomy, but it differs from the latter in floristic composition. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad- leaved forest is the main vegetation type in mountain areas . It is dominated by the tree species of Fagaceae , Euphorbiaceae , Theaceae and Lauraceae in majority. It differs from the tropical montane rain forests in lack of epiphytes and having more abundant lianas and plants with compound leaves . It is considered to be a distinct vegetation type in the northern margin of mainland southeastern Asia controlling by a strong monsoon climate, based on its floristic and physiognomic characteristics.  相似文献   

3.
论滇南西双版纳的森林植被分类   总被引:3,自引:0,他引:3  
朱华 《云南植物研究》2007,29(4):377-387
本文基于多年研究成果的总结,对西双版纳森林植被的分类、主要植被类型及其特征进行了系统归纳,并讨论了它们与世界类似热带森林植被的关系。以群落的生态外貌与结构、种类组成和生境特征相结合作为植被分类的原则和依据,可以将西双版纳的热带森林植被分类为热带雨林、热带季节性湿润林、热带季雨林和热带山地常绿阔叶林四个主要的植被型,包括有至少二十个群系。热带雨林包括热带季节雨林和热带山地(低山)雨林二个植被亚型。热带季节雨林具有与赤道低地热带雨林几乎一样的群落结构和生态外貌特征,是亚洲热带雨林的一个类型,但由于发生在季风热带北缘纬度和海拔的极限条件下,受到季节性干旱和热量不足的影响,在其林冠层中有一定比例的落叶树种存在,大高位芽植物和附生植物较逊色而藤本植物和在叶级谱上的小叶型植物更丰富,这些特征又有别于赤道低地的热带雨林。热带山地雨林是热带雨林的山地亚型,是该地区热带山地较湿润生境的一种森林类型,它在植物区系组成和生态外貌特征上类似于热带亚洲的低山雨林,隶属于广义热带雨林植被型下的低山雨林亚型。热带季节性湿润林分布在石灰岩山坡中、上部,在群落外貌上类似热带山地常绿阔叶林但在植物区系组成上与后者不同,它是石灰岩山地垂直带上的一种植被类型。热带季雨林是分布在该地区开阔河谷盆地及河岸受季风影响强烈的生境的一种热带落叶森林,是介于热带雨林与萨王纳之间的植被类型。热带山地常绿阔叶林(季风常绿阔叶林)是西双版纳的主要山地植被类型,它分布在热带季节雨林带之上偏干的山地生境。它在植物区系组成上不同于该地区的热带季节雨林,在生态外貌特征上亦不同于热带山地雨林,是发育在受地区性季风气候强烈影响的热带山地的一种森林植被类型。  相似文献   

4.
Species composition, physiognomy and plant diversity of the less known tropical montane forests in southern Yunnan were studied based on the data from 15 sampling plots in three sites. These forests are mainly dominated by the families Theaceae, Fagaceae, Lauraceae and Euphorbiaceae in floristic composition, and dominated by evergreen phanerophytes with mesophyllous leaves. These forests are similar to lower montane rain forests in equatorial southeastern Asia in floristic composition and altitudinal distributions, but differ in physiognomy by having few epiphytes, but more lianas and more plants with compound leaves. These differences could be due to strongly seasonal climate and so-called mass elevation effect in southern Yunnan. They also differ from the tropical seasonal rain forests at lower altitudes in southern Yunnan by having conspicuously lower species richness, few epiphytes, fewer mega-mesophanerophytes, more abundant micro-nanophanerophytes and hemicryptophytes and more plants with microphyllous leaves. It is suggested that these forests could be termed tropical montane evergreen broad-leaved forests, and be a vegetation type from the northern margin of mainland southeastern Asia controlled by a strongly seasonal climate.  相似文献   

5.
An altitudinal transect study of the vegetation on Mount Kinabalu,Borneo   总被引:4,自引:0,他引:4  
K. Kitayama 《Plant Ecology》1992,102(2):149-171
A quantitative transect analysis of altitudinal sequences of forest canopy species from 600 to 3400 m asl on Mt. Kinabalu (4101 m), Borneo, resulted in four discrete altitudinal vegetation zones. These were made up of mutually exclusive species groups for lowland (<1200 m asl), lower montane (1200 to 2000–2350 m asl), upper montane (2000–2350 to 2800 m asl), and subalpine (2800 to the forest line, 3400 m asl) zones. Zonal soil types were correlated with the vegetation zones. In upslope sequence, these were: lowland Oxisols, montane Histosol/Spodosol complex, and subalpine Inceptisols. The highest contents of organic carbon, extractable phosphorus, and exchangeable magnesium and potassium were recorded in the lower and upper montane zones. The upper boundaries of the lowland, upper montane and subalpine zones coincided with thermal thresholds of latitudinal bioclimatic zones: 18°C TMIN (Köppen's tropical), WI 85 (Kira's warm temperate), and WI 45 (Kira's cool temperate), respectively. The upper limit of the lower montane zone was correlated with an abrupt increase of water surplus estimated from the annual rainfall minus annual potential evaporation. These climatic characteristics appear to define ecological altitudinal turnover points, so called critical altitudes, where groups of associated species are displaced by other groups.Abbreviations asl = above sea level - DBH = diameter at breast height - PHQ = Park headquarters - TMAX = Mean daily maximum air temperature - TMIN = Mean daily minimum air temperature - TWINSPAN = Two-way indicator species analysis - WI = Warmth index  相似文献   

6.
朱华 《植物生态学报》2005,29(1):170-174
通过分析云南南部的水、热条件及植被分布,讨论了季雨林植被类型及其特征,认为云南南部的季雨林是介于热带雨林与萨王纳之间的,在干季基本上是落叶的一种森林植被类型,符合Schimper (1903)定义的热带季雨林植被,并考虑它是一种生态学意义上的经向地带性植被,与该地区的纬向地带性植被热带季节雨林一起共同构成云南南部的水平地带性植被。在云南南部的石灰岩山坡分布的过去被认为是季雨林的森林植被,尽管也受到季节性干旱的影响而不同程度地具有落叶成分,但它在群落外貌上与典型的季雨林不相同,在植物区系组成上也明显不同于该地区非石灰岩山地的季风常绿阔叶林,在分布上亦是在石灰岩低山沟谷的热带季节性雨林水平地带性植被带之上,根据其生态外貌、植物区系组成和生境特点,我们建议用“热带季节性湿润林”来称呼这类石灰岩山地森林类型,在性质上属东南亚热带北缘石灰岩山地垂直带上的一种植被类型。  相似文献   

7.
Based on the analysis of 600 vegetation plots using the method of Braun-Blanquet (1964) the composition of the whole vascular forest plant flora with about 1220 species was studied in the forests of Mt. Kilimanjaro. The altitudinal distribution of all strata (trees, shrubs, epiphytes, lianas and herbs) along a transect of 2400 m is discussed with respect to altitudinal zonation and ecological factors. With uni-dimensionally constraint clustering significant discontinuities were revealed that occurred simultaneously in the different strata. Thus even in structurally highly complex, multilayered tropical montane forests distinct community units exist that can be surveyed and classified by the Braun-Blanquet approach. This observed zonation was significantly correlated with altitude, temperature and soil acidity (pH); rainfall was of importance in particular for the zonation of epiphytes. Other key factors were humidity (influenced by stable cloud condensation belts) and minimum temperature (in particular the occurrence of frost at 2700 m altitude upslope). The contrary results of other transect studies in East Africa in respect to continuity of change in floristic composition appear to be caused by different sampling methods and intensities or mixing of data from areas with different climate conditions, whereas species richness did not influence the clarity of floristic discontinuities on Kilimanjaro and other parts of East Africa.  相似文献   

8.
《Plant Ecology & Diversity》2013,6(5-6):361-377
Decline in mean temperature with elevation correlates with a more or less gradual change in forest floristics mediated by minimum temperature tolerances and competition, and in its diversity, well documented on wet equatorial mountains. On the mountains of monsoon tropical Asia, the predominance of a single wet and dry season offers opportunity to relate increasing cloud and rainfall seasonality with a departure in a zonation most clearly recognised on equatorial mountains. Observations indicate that the lowland to lower montane forest transition is gradual and constant in elevation throughout the monsoon tropical Asia region, and contrasts with the variable elevation at which forest structure and physiognomy, alternatively floristics alone, changes between lower and upper equatorial montane forests. Both ecotones are observed to correlate with the elevation and seasonality at which decline in temperature daily results in condensation of water vapour into cloud, resulting in cloud shadow, and fog therefore water supply where cloud penetrates the canopy. Seasonal variation in these climatic interactions influence forest structure and physiognomy and, by mediating the interaction between vegetation and substrate, also leads to zonation in soils and consequently floristics. Historical biogeographical factors also influence zonal floristics.  相似文献   

9.
朱华 《植物生态学报》2006,30(1):184-186
该文针对“西双版纳热带山地雨林的植物多样性研究”论文中存在的一些问题进行了讨论。原文所依据的6个调查样地, 从其分布海拔、生境、群落的生态外貌特征、植物区系组成及单位面积植物种数的统计上反映出它们并非都属于同样的植被类型,即原文所称的热带山地雨林,而可能分别属于《云南植被》中所应用的热带季节雨林的次生林群落(样地I和II)、季风常绿阔叶林群落(样地V和VI)及类似于苔藓常绿阔叶林(样地III和IV)的群落类型。由于这些样地代表了不同的植被类型, 导致在对这些样地的植物多样性特征的比较上出现较大差异。对原文在资料分析和与其它森林群落植物多样性的比较上存在的一些问题也作了讨论。原文的研究结果显示了西双版纳不同海拔高度上森林植物群落的物种多样性特征,但并不能全部运用于该地区的热带山地雨林这一特定植被类型。  相似文献   

10.
Tang  Cindy Q.  Ohsawa  Masahiko 《Plant Ecology》1997,133(1):63-78
Altitudinal zonation of evergreen, deciduous and coniferous forests on Mt. Emei (3099 m asl, 29°34.5' N, 103°21.5' E), Sichuan, China was studied to understand the transition of vegetation zonation from tropical to temperate mountains in humid Asia. On the basis of quantitative data on floristic composition and community structure sampled at ten plots selected in different altitudes on the eastern slope of the mountain, forest zonation and the inter-relationships among different life-forms of trees in each zonal forest community were studied quantitatively. Three forest zones were identified physiognomically along the altitudinal gradient, viz. (i) the evergreen broad-leaved forest zone (660–1500 m asl), (ii) the mixed forest zone (1500–2500 m asl), and (iii) the coniferous forest zone (2500–3099 m asl). Great compositional changes were observed along elevation, and the zonal forest communities were characterized by their dominants and floristic composition. Maximum tree height decreased from 33 m at lower middle altitude (965 m asl) to 13 m near the summit (2945 m asl). There was no apparent deciduous forest zone along the altitudinal gradient, but true mixed forests of three life-forms (evergreen, deciduous, and coniferous) were formed around 2000–2500 m asl. Patches of deciduous forest were found in a lower part of the mixed forest zone, particularly on scree slopes, between 1450 m and 1900 m asl. These patches were dominated by the Tertiary relic deciduous trees, such as Davidia involucrata, Tetracentron sinense, and Cercidiphyllum japonicum var. sinense. High species diversity in the mixed forest zone resulted from the overlapping of different life-forms at middle altitudes, which is partly due to wider variety of temperature-altitude correlations. A comparison of the altitudinal zonation with the other east Asian mountain vegetation clarified that Mt. Emei is located exactly at the ecotone between tropical and temperate zonation types in eastern Asia.  相似文献   

11.
望天树林与相近类型植被结构的比较研究   总被引:20,自引:0,他引:20  
  相似文献   

12.
西双版纳青梅林的群落学研究   总被引:13,自引:1,他引:12  
朱华   《广西植物》1993,13(1):48-60
本文对分布在西双版纳勐腊县南部以龙脑香科植物版纳青梅为标志树种的热带森林作了群落学分析,认为它具有热带雨林的结构和基本特征,在性质上属于热带季节雨林。由于分布海拔偏高和生境特殊,它的上层乔木几乎常绿,在外貌上与望天树林和本地区典型的季节雨林有一定差异,在区系组成上向山地雨林过渡,它表现为一种季节雨林向山地雨林过渡的类型,同时也是一种热带北缘地区季节雨林的海拔极限类型。  相似文献   

13.
Hua Zhu  Min Cao  Huabin Hu 《Biotropica》2006,38(3):310-317
Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical Southeast (SE) Asia to subtropical East Asia, and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The flora of the region consists of a recorded 3336 native seed plant species, belonging to 1140 genera in 197 families, among which 83.5 percent are tropical genera and 32.8 percent are endemic to tropical Asia, suggesting a strong affinity to tropical Asian flora. The vegetation of Xishuangbanna is organized into four forest types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad‐leaved forest, and tropical monsoon forest. The tropical rain forest in Xishuangbanna has the same floristic composition of families and genera as some lowland equatorial rain forests in SE Asia, and is dominated (with a few exceptions) by the same families both in species richness and stem dominance. The exceptions include some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes, and a higher abundance of lianas and microphyllic plants. We consider the tropical rain forest of Xishuangbanna as a type of tropical Asian rain forest, based on their conspicuous similarities in ecological and floristic characteristics.  相似文献   

14.
Hemp  Andreas 《Plant Ecology》2002,159(2):211-239
140 taxa of 61 genera in 24 families of pteridophytes were recorded on the southern slopes of Mt. Kilimanjaro. These represent about one third of the entire pteridophyte flora of Tanzania. The families richest in species are the Aspleniaceae, the Adiantaceae, the Dryopteridaceae, the Thelypteridaceae and the Hymenophyllaceae. Due to its luxuriant montane rain forest, which receives a precipitation of up to over 3000 mm, Mt. Kilimanjaro is distinctly richer in pteridophyte species than other volcanoes in East Africa. However, compared with the mountains of the Eastern Arc, the number of pteridophytes on Mt. Kilimanjaro is smaller. This can be explained by the widely destroyed submontane (intermediate) forest rather than by the higher age of the Eastern Arc Mts.The altitudinal distribution of all ferns was investigated in 24 transects. On the southern slopes of Mt. Kilimanjaro they were found in an altitudinal range of 3640 m. Cyclosorus quadrangularis, Azolla nilotica, Azolla africana andMarsilea minuta are restricted to the foothills, while Polystichum wilsonii, Cystopteris nivalis and Asplenium adiantum-nigrum are species found in the highest altitudes.Based on unidimensionally constrained clustering and on the analysis of the lowermost and uppermost occurrence of species, floristic discontinuities within the transects were determined. From these data and from an evaluation of the distribution of ecological groups and life forms, 11 altitudinal zones could be distinguished: a colline zone (–900 m asl), a submontane zone (900–1600 m asl) with lower and upper subzones, a montane zone (1600-2800 m asl) divided into 4 subzones, a subalpine zone (2800–3900 m asl) with lower, middle and upper subzones, and finally a (lower) alpine zone above 3900 m. The highest species numbers were observed in the lower montane forest belt between 1600 and 2000 m altitude. The zonation of ferns found at Mt. Kilimanjaro corresponds well with the vegetational zonation described by other authors using bryophytes as indicators in different parts of the humid tropics.  相似文献   

15.
M. Ohsawa 《Plant Ecology》1995,121(1-2):3-10
A new template for mountain vegetation zonation along latitudinal gradients is proposed for examining geographical pattern of various forest attributes in humid monsoon Asia. The contrasting temperature regime in tropical and temperate mountains, i.e., the former is a non-seasonal, temperature-sum controlled environment, and the latter is a seasonal, low temperature limiting environment, leads to different altitudinal patterns of tree height distribution and species richness. In the tropical mountains, both tree height and species richness decrease steeply, and the tree height often stepwise. The decline of tree height and species diversity in the temperate mountains is far less pronounced except near the forest limit. Both trends are explained by their temperature regime.  相似文献   

16.
Abiotic and vegetation data were collected along two altitudinal transects through mature montane Quercus forests on the Pacific and Atlantic slopes of Costa Rica's Chirripó Massif. Between 2000 and 3200 m asl twenty-four 0.05 ha forest plots were selected at altitudinal intervals of 100 m, and eight soil profiles were described at intervals of 200 m. A TWINSPAN classification aided in the determination of eight zonal forest communities on the basis of their floristic composition. They are grouped in two sets of four: (i) the palm-rich lauraceous-fagaceous Lower Montane Mollinedia-Quercus Forests (2000–2600 m asl) and (ii) the bamboo-rich myrsinaceous-fagaceous Upper Montane Schefflera-Quercus Forests (2500–3200 m asl), respectively. Vegetation changes seem correlated with two major climatic gradients: (i) a temperature gradient (altitude), and (ii) a moisture gradient (wet Atlantic vs. moist Pacific slope). Most soils are Andepts, and residual, colluvial or derived from volcanic material. Humus layers are thicker on the wetter Atlantic slope. A total of 431 vascular plant species consisted of 86 pteridophytes, 1 gymnosperm, 296 dicots and 48 monocots. Species richness, canopy height and stem diameter decrease with increasing altitude, while the canopy surface becomes more flattend. A comparison with other studies shows that Chirripó's montane Quercus forests fit within the environmental ranges known from altitudinal zonations elsewhere in the Tropics.Abbreviations asl above sea level - dbh diameter at breast height - LM Lower Montane - Mt. Mountain - TWINSPAN two way indicator species analysis - UM Upper Montane - VU code referring to soil profiles as presented in Van Uffelen (1991) This paper is dedicated to the memory of Alwyn H. Gentry, an outstanding and inspiring tropical botanist who tragically died in a plane crash in the mountains of Ecuador on August 3 1993, when surveying possible boundaries for a new tropical cloud forest reserve.  相似文献   

17.
云南热带雨林具有与东南亚低地热带雨林类似的群落结构、生态外貌特征和物种多样性,是亚洲热带雨林的一个类型。它的植物区系组成中有90%的属和多于80%的种为热带分布成分,其中约40%的属和70%的种为热带亚洲分布型,它含属种较多的优势科和在群落中重要值较大的科也与亚洲热带雨林相似,是亚洲热带雨林和植物区系的热带北缘类型。云南西南部、南部与东南部的热带雨林在群落结构和生态外貌上类似,但在南部与东南部之间有明显的植物区系分异,它们经历了不同的起源背景和演化历程。云南的热带雨林在很大程度上由西南季风维持。喜马拉雅隆升导致西南季风气候形成和加强,在云南热带局部地区产生了湿润气候,发育了热带雨林植被。现在的云南热带雨林里或其分布地区有落叶物种或热带落叶林存在,这不仅是季节性气候的影响,推测在晚第三纪或第四纪更新世云南热带地区曾经历了干旱气候。云南热带雨林的分布主要受制于局部生境,并非地区性气候条件。  相似文献   

18.
滇南勐宋热带山地雨林的物种多样性与生态学特征   总被引:21,自引:0,他引:21       下载免费PDF全文
 研究了鲜为人知的滇南勐宋地区的原始山地雨林植被, 根据分布生境、群落结构和种类组成特征,可将该山地雨林区分为沟谷和山坡两个类型, 分别定义为八蕊单室茱萸(Mastixia euonymoides)-大萼楠(Phoebe megacalyx)林和云南拟单性木兰(Parachmeria yunnanensis)-云南裸花(Gymnanthes remota)林。该山地雨林的外貌仍以单叶、革质、全缘、中叶为主的常绿中、小高位芽植物组成为特征,层间木质藤本植物仍较丰富,草本高位芽植物和附生植物丰富,但板根和茎花现象少见,属于热带山地垂直带上低山雨林或山地雨林植被类型。与该地区的典型热带季节雨林和赤道热带雨林相比, 勐宋的山地雨林群落中的大、中高位芽植物和藤本高位芽植物比例相对减少, 小、矮高位芽植物和草本高位芽植物比例相对增加,单叶、革质、非全缘叶和小叶比例相对增加,板根现象少见。与中国热带北缘-南亚热带地区(季风)常绿阔叶林比较, 勐宋的山地雨林有较多的附生植物和草本高位芽植物,相对较少的小高位芽植物和矮高位芽植物,小叶比例亦较少,非全缘叶和革质叶比例相对较低。故勐宋山地雨林是滇南热带北缘山地的一种较湿润生境的植被类型, 与所谓的季风常绿阔叶林不同。在物种多样性上,勐宋热带山地雨林在单位面积植物种数上并不比该地区的热带季节雨林低, 物种多样性指数与低丘季节雨林相当,比沟谷季节雨林低, 明显高于季风常绿阔叶林。  相似文献   

19.
The floristic and structural differentiation of vegetation along the altitudinal gradient in four subalpine forests of different developmental stages on Mt. Fuji has been studied. Near the forest limit a micropattern of vegetation corresponding to the altitudinal zonation has been observed which elucidated the mechanisms of development of the vegetation zonation. As to early stages of vegetation development only two types can be distinguished: the volcanic desert above 1500 m and the pioneer forests below. As to later stages a differentiation of subzones includes from higher to lower altitudes: the Alnus maximowiczii, Betula ermanii, Abies veitchii and Tsuga diversifolia forests. Larix leptolepis and Sorbus americana ssp. japonica, appear as co-dominants in ecotonal communities between the principal subzones and are also important pioneers in early stages. Similarity analyses reveal that the upper subalpine Alnus-Betula forests can be regarded as early successional phases of the climax Abies-Tsuga forests of the lower subalpine zone. The regular arrangement of A. maximowiczii-B. ermanii-A. veitchii is studied along the gradient from the margin to the interior of the forest growing near the forest limit where locally favourable conditions prevail. Growth form, height growth, photosynthetic activity, seed supply, and seedling distribution of the three principal species have been compared, as well as biomass and production relations in contiguous forests of these species. The marginal Alnus type community is productive and disturbance-tolerant, and has a wide ecological and sociological amplitude along the gradient, while the central Abies community is accumulative and disturbance-intolerant, and has a narrower tolerance range, but is superior in competition under stable habitat conditions. A vegetation organization, ‘temporal multi-storeyed structure’, is suggested which means that a zonal pattern of vegetation within a climax region develops by successive replacement of successional species along an environmental gradient.  相似文献   

20.
Question: How does the floristic diversity of Afromontane rainforests change along an altitudinal gradient? What are the implications for conservation planning in these strongly fragmented forest areas that form part of the Eastern Afromontane Biodiversity Hotspot? Location: Bonga, southwestern Ethiopia. Methods: Based on evidence from other montane forests, we hypothesized that altitude has an effect on the floristic diversity of Afromontane rainforests in southwestern Ethiopia. To test this hypothesis, detailed vegetation surveys were carried out in 62 study plots located in four relatively undisturbed forest fragments situated at altitudes between 1600 m and 2300 m. Floristic diversity was evaluated using a combination of multivariate statistical analyses and diversity indices. Results: Ordination and indicator species analyses showed gradual variations in floristic diversity along the altitudinal gradient with a pronounced shift in species composition at ca. 1830 m. Upper montane forest (>1830 m) is characterized by high fern diversity and indicator species that are Afromontane endemics. Lower montane forest (<1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now. We conclude that both forest types identified during this study need to be considered for conservation because of their particular species compositions. Owing to the high degree of forest fragmentation, conservation concepts should consider a multi‐site approach with at least two protected areas at different altitudinal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号