首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quinone derivatives of DOPA, dopamine, and N-acetyldopamine inactivate tyrosine hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the catecholamine neurotransmitters. The parent catechols are inert in this capacity. The effects of the catecholquinones on tyrosine hydroxylase are prevented by antioxidants and reducing reagents but not by scavengers of hydrogen peroxide, hydroxyl radicals, or superoxide radicals. Quinone modification of tyrosine hydroxylase modifies enzyme sulfhydryl groups and results in the formation of cysteinyl-catechols within the enzyme. Catecholquinones convert tyrosine hydroxylase to a redox-cycling quinoprotein. Quinotyrosine hydroxylase causes the reduction of the transition metals iron and copper and may therefore contribute to Fenton-like reactions and oxidative stress in neurons. The discovery that a phenotypic marker for catecholamine neurons can be converted into a redox-active species is highly relevant for neurodegenerative conditions such as Parkinson's disease.  相似文献   

3.
Salsolinol is one of the dopamine-derived tetrahydroisoquinolines and is synthesized from pyruvate or acetaldehyde and dopamine. As it cannot cross the blood-brain barrier, salsolinol as the R enantiomer in the brain is considered to be synthesized in situ in dopaminergic neurons. Effects of R and S enantiomers of salsolinol on kinetic properties of tyrosine hydroxylase [tyrosine, tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2], the rate-limiting enzyme of catecholamine biosynthesis, were examined. The naturally occurring cofactor of tyrosine hydroxylase, L-erythro-5,6,7,8-tetrahydrobiopterin, was found to induce allostery to the enzyme polymers and to change the affinity to the biopterin itself. Using L-erythro-5,6,7,8-tetrahydrobiopterin, tyrosine hydroxylase recognized the stereochemical structures of the salsolinols differently. The asymmetric center of salsolinol at C-1 played an important role in changing the affinity to L-tyrosine. The allostery of tyrosine hydroxylase toward biopterin cofactors disappeared, and at low concentrations of biopterin such as in brain tissue, the affinity to the cofactor changed markedly. A new type of inhibition of tyrosine hydroxylase, by depleting the allosteric effect of the endogenous biopterin, was found. It is suggested that under physiological conditions, such a conformational change may alter the regulation of DOPA biosynthesis in the brain.  相似文献   

4.
The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.  相似文献   

5.
Three isozymes of human tyrosine hydroxylase (hTH1, hTH2 and hTH4) were expressed in Escherichia coli and purified to homogeneity. Natural catecholamines and related synthetic compounds were found to be potent inhibitors, competitive to the tetrahydrobiopterin cofactor, of all the isozymes. Combining visible spectroscopy and equilibrium-binding studies, it was found that catecholamines bind to hTH1 and hTH2 with a stoichiometry of about 1.0 mol/mol enzyme subunit, interacting with the catalytic iron at the active site. All the isozymes tested were excellent substrates for cAMP-dependent protein kinase (Km = 5 microM, Vmax = 9.5 mumol.min-1.mg kinase-1). The incorporation of about 1.0 mol phosphate/subunit at Ser40 decreased the affinity of dopamine binding by a factor of 10. Conversely, the addition of stoichiometric amounts of Fe(II) and dopamine to the apoenzymes reduced both the affinity and stoichiometry of phosphorylation by cAMP-dependent protein kinase by 2-3-fold. These data provide evidence for a mutual interaction between the presumed regulatory and catalytic domains of hTH, and show that activation of the enzyme by phosphorylation and inactivation by binding of catecholamines are related events, which probably represent important mechanisms for the regulation of the enzyme activity in vivo.  相似文献   

6.
NMR spectroscopy and X-ray crystallography have provided important insight into structural features of phenylalanine hydroxylase (PAH) and tyrosine hydroxylase (TH). Nevertheless, significant problems such as the substrate specificity of PAH and the different susceptibility of TH to feedback inhibition by l-3,4-dihydroxyphenylalanine (l-DOPA) compared with dopamine (DA) remain unresolved. Based on the crystal structures 5pah for PAH and 2toh for TH (Protein Data Bank), we have used molecular docking to model the binding of 6(R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) and the substrates phenylalanine and tyrosine to the catalytic domains of PAH and TH. The amino acid substrates were placed in positions common to both enzymes. The productive position of tyrosine in TH.BH4 was stabilized by a hydrogen bond with BH4. Despite favorable energy scores, tyrosine in a position trans to PAH residue His290 or TH residue His336 interferes with the access of the essential cofactor dioxygen to the catalytic center, thereby blocking the enzymatic reaction. DA and l-DOPA were directly coordinated to the active site iron via the hydroxyl residues of their catechol groups. Two alternative conformations, rotated 180 degrees around an imaginary iron-catecholamine axis, were found for DA and l-DOPA in PAH and for DA in TH. Electrostatic forces play a key role in hindering the bidentate binding of the immediate reaction product l-DOPA to TH, thereby saving the enzyme from direct feedback inhibition.  相似文献   

7.
Abstract: Investigations of gene therapy for Parkinson's disease have focused primarily on strategies that replace tyrosine hydroxylase. In the present study, the role of aromatic l -amino acid decarboxylase in gene therapy with tyrosine hydroxylase was examined by adding the gene for aromatic l -amino acid decarboxylase to our paradigm using primary fibroblasts transduced with both tyrosine hydroxylase and GTP cyclohydrolase I. We compared catecholamine synthesis in vitro in cultures of cells with tyrosine hydroxylase and aromatic l -amino acid decarboxylase together versus cocultures of cells containing these enzymes separately. l -DOPA and dopamine levels were higher in the cocultures that separated the enzymes. To determine the role of aromatic l -amino acid decarboxylase in vivo, cells containing tyrosine hydroxylase and GTP cyclohydrolase I were grafted alone or in combination with cells containing aromatic l -amino acid decarboxylase into the 6-hydroxydopamine-denervated rat striatum. Grafts containing aromatic l -amino acid decarboxylase produced less l -DOPA and dopamine as monitored by microdialysis. These findings indicate that not only is there sufficient aromatic l -amino acid decarboxylase near striatal grafts producing l -DOPA, but also the close proximity of the enzyme to tyrosine hydroxylase is detrimental for optimal dopamine production. This is most likely due to feedback inhibition of tyrosine hydroxylase by dopamine.  相似文献   

8.
Recently, we characterized leptin receptors in bovine adrenal medullary cells (Yanagihara et al. 2000). Here we report the stimulatory effect of leptin on catecholamine synthesis in the cells. Incubating cells with leptin (10 nM) for 20 min increased the synthesis of 14C-catecholamines from [14C]tyrosine, but not from L-3,4-dihydroxyphenyl [3-14C]alanine. The stimulation of catecholamine synthesis in the cells by leptin was associated with the phosphorylation and activation of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis. The incubation of cells with leptin resulted in a rapid activation of the mitogen-activated protein kinases (MAPKs). An inhibitor of MAPK kinase, U0126, nullified the stimulatory effect of leptin on the synthesis of 14C-catecholamines. Leptin potentiated the stimulatory effect of acetylcholine on 14C-catecholamine synthesis, whereas leptin failed to enhance the phosphorylation and activation of tyrosine hydroxylase induced by acetylcholine. These findings suggest that leptin stimulates catecholamine synthesis via the activation of tyrosine hydroxylase by two different mechanisms, i.e., one is dependent on tyrosine hydroxylase phosphorylation mediated through the MAPK pathway and the second is independent of enzyme phosphorylation.  相似文献   

9.
The enzyme tyrosine hydroxylase catalyzes the first step in the biosynthesis of dopamine, norepinephrine, and epinephrine. Tyrosine hydroxylase is a substrate for cyclic AMP-dependent protein kinase as well as other protein kinases. We determined the Km and Vmax of rat pheochromocytoma tyrosine hydroxylase for cyclic AMP-dependent protein kinase and obtained values of 136 microM and 7.1 mumol/min/mg of catalytic subunit, respectively. These values were not appreciably affected by the substrates for tyrosine hydroxylase (tyrosine and tetrahydrobiopterin) or by feedback inhibitors (dopamine and norepinephrine). The high Km of tyrosine hydroxylase correlates with the high content of tyrosine hydroxylase in catecholaminergic cells. We also determined the kinetic constants for peptides modeled after actual or potential tyrosine hydroxylase phosphorylation sites. We found that the best substrates for cyclic AMP-dependent protein kinase were those peptides corresponding to serine 40. Tyrosine hydroxylase (36-46), for example, exhibited a Km of 108 microM and a Vmax of 6.93 mumol/min/mg of catalytic subunit. The next best substrate was the peptide corresponding to serine 153. The peptide containing the sequence conforming to serine 19 was a very poor substrate, and that conforming to serine 172 was not phosphorylated to any significant extent. The primary structure of the actual or potential phosphorylation sites is sufficient to explain the substrate behavior of the native enzyme.  相似文献   

10.
Tyrosine hydroxylase is the rate-limiting step in the synthesis of dopamine and is tightly regulated. Previous studies have shown it to be covalently modified and potently inhibited by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an endogenous neurotoxin via dopamine catabolism which is relevant to Parkinson's disease. In order to elucidate the mechanism of enzyme inhibition, a source of pure, active tyrosine hydroxylase was necessary. The cloning and novel purification of human recombinant TH from Escherichia coli is described here. This procedure led to the recovery of ~23 mg of pure, active and stable enzyme exhibiting a specific activity of ~17 nmol/min/mg. The enzyme produced with this procedure can be used to delineate the tyrosine hydroxylase inhibition by DOPAL and its relationship to Parkinson's disease. This procedure improves upon previous methods because the fusion protein gives rise to high expression and convenient affinity-capture, and the cleaved and highly purified hTH makes the product useful for a wider variety of applications.  相似文献   

11.
Ser395 and Ser396 in the active site of rat tyrosine hydroxylase are conserved in all three members of the family of pterin-dependent hydroxylases, phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase. Ser395 is appropriately positioned to form a hydrogen bond to the imidazole nitrogen of His331, an axial ligand to the active site iron, while Ser396 is located on the wall of the active site cleft. Site-directed mutagenesis has been used to analyze the roles of these two residues in catalysis. The specific activities for formation of dihydroxyphenylalanine by the S395A, S395T, and S396A enzymes are 1.3, 26, and 69% of the wild-type values, respectively. Both the S395A and S396A enzymes bind a stoichiometric amount of iron and exhibit wild-type spectra when complexed with dopamine. The K(M) values for tyrosine, 6-methyltetrahydropterin, and tetrahydrobiopterin are unaffected by replacement of either residue with alanine. Although the V(max) value for tyrosine hydroxylation by the S395A enzyme is decreased by 2 orders of magnitude, the V(max) value for tetrahydropterin oxidation by either the S395A or the S396A enzyme is unchanged from the wild-type value. With both mutant enzymes, there is quantitative formation of 4a-hydroxypterin from 6-methyltetrahydropterin. These results establish that Ser395 is required for amino acid hydroxylation but not for cleavage of the oxygen-oxygen bond, while Ser396 is not essential. These results also establish that cleavage of the oxygen-oxygen bond occurs in a separate step from amino acid hydroxylation.  相似文献   

12.
Residues Phe300 and Phe309 of tyrosine hydroxylase are located in the active site in the recently described three-dimensional structure of the enzyme, where they have been proposed to play roles in substrate binding. Also based on the structure, Phe300 has been reported to be hydroxylated due to a naturally occurring posttranslational modification [Goodwill, K. E., Sabatier, C., and Stevens, R. C. (1998) Biochemistry 37, 13437-13445]. Mutants of tyrosine hydroxylase with alanine substituted for Phe300 or Phe309 have now been purified and characterized. The F309A protein possesses 40% less activity than wild-type tyrosine hydroxylase in the production of DOPA, but full activity in the production of dihydropterin. The F300A protein shows a 2.5-fold decrease in activity in the production of both DOPA and dihydropterin. The K(6-MPH4) value for F300A tyrosine hydroxylase is twice the wild-type value. These results are consistent with Phe309 having a role in maintaining the integrity of the active site, while Phe300 contributes less than 1 kcal/mol to binding tetrahydropterin. Characterization of Phe300 by MALDI-TOF mass spectrometry and amino acid sequencing showed that hydroxylation only occurs in the isolated catalytic domain after incubation with a large excess of 7, 8-dihydropterin, DTT, and Fe(2+). The modification is not observed in the untreated catalytic domain or in the full-length protein, even in the presence of excess iron. These results establish that hydroxylation of Phe300 is an artifact of the crystallography conditions and is not relevant to catalysis.  相似文献   

13.
14.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells.  相似文献   

15.
The catalytic domains of the pterin-dependent enzymes phenylalanine hydroxylase and tyrosine hydroxylase are homologous, yet differ in their substrate specificities. To probe the structural basis for the differences in specificity, seven residues in the active site of phenylalanine hydroxylase whose side chains are dissimilar in the two enzymes were mutated to the corresponding residues in tyrosine hydroxylase. Analysis of the effects of the mutations on the isolated catalytic domain of phenylalanine hydroxylase identified three residues that contribute to the ability to hydroxylate tyrosine, His264, Tyr277, and Val379. These mutations were incorporated into full-length phenylalanine hydroxylase and the complementary mutations into tyrosine hydroxylase. The steady-state kinetic parameters of the mutated enzymes showed that the identity of the residue in tyrosine hydroxylase at the position corresponding to position 379 of phenylalanine hydroxylase is critical for dihydroxyphenylalanine formation. The relative specificity of tyrosine hydroxylase for phenylalanine versus tyrosine, as measured by the (V/K(phe))/(V/K(tyr)) value, increased by 80000-fold in the D425V enzyme. However, mutation of the corresponding valine 379 of phenylalanine hydroxylase to aspartate was not sufficient to allow phenylalanine hydroxylase to form dihydroxyphenylalanine at rates comparable to that of tyrosine hydroxylase. The double mutant V379D/H264Q PheH was the most active at tyrosine hydroxylation, showing a 3000-fold decrease in the (V/K(phe))/(V/K(tyr)) value.  相似文献   

16.
As reported previously [Vulliet et al. (1985) FEBS Lett. 182 335-339], tyrosine hydroxylase purified from rat pheochromocytoma is phosphorylated at an identical site (site A) by cyclic AMP-dependent protein kinase, the calmodulin-dependent multiprotein kinase and protein kinase C, while the calmodulin-dependent multiprotein kinase also phosphorylates another unique site (site C). Preparations of tyrosine hydroxylase purified from this source are also contaminated with traces of a fourth protein kinase which phosphorylates another unique site (site E). We have isolated tryptic peptides containing each of these sites and determined their amino acid sequences. By comparison of these data with the known cDNA sequence for rat tyrosine hydroxylase, we have been able to identify these sites as Ser-8 (site E), Ser-19 (site C), and Ser-40 (site A). In some preparations of tyrosine hydroxlyase, cyclic AMP-dependent protein kinase also phosphorylated a secondary site which was identified as ser-153. All of these phosphorylation sites are in the amino-terminal region, where there is no significant homology with the closely related enzyme, phenylalanine hydroxylase. Our data also establish that the initiator methionine is removed by post-translational processing to leave pro-2 as the amino-terminus of the mature protein. The significance of these results for the mechanism of action of extracellular signals on catecholamine biosynthesis is discussed.  相似文献   

17.
As a compound of structural analogy with MPTP, N-methyl-norsalsolinol (2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; 2-MDTIQ) was recently identified in the brain and cerebrospinal fluid of patients with Parkinson's disease. As 2-MDTIQ cannot pass the blood-brain barrier, endogenous formation is suggested. Previous studies of the dopamine metabolism in Parkinson's disease have demonstrated an increased dopamine turnover in the presence of 2-MDTIQ. In the present study, we investigated the effect of 2-MDTIQ on tyrosine hydroxylase [ -tyrosine, tetrahydropteridine, oxygen: oxidoreductase (3-hydroxylating), EC 1.14.16.2; TH] activity in vitro using homogenated tissue of the rat nucleus accumbens as enzyme source. Basal TH activity was 20.1 ± 5.9 pmol -3,4-dihydroxyphenylalanine ( -DOPA)/min/mg protein. 2-MDTIQ non-competitively inhibited basal TH activity with an IC50 of 10 μM. After addition of 0.1 mM 2-MDTIQ, enzyme activity was nearly completely blocked. These results indicate that the endogenous formation of 2-MDTIQ in consequence of an impaired dopamine metabolism may in turn lead to a decrease in dopamine synthesis. Thus, 2-MDTIQ is suggested not only to represent an endogenous marker of Parkinson's disease, but also to support changes in the transmitter synthesis of dopaminergic neurons. Since previous investigations have moreover demonstrated a cytotoxic potential of 2-MDTIQ, these findings require special attention. 2-MDTIQ may represent an essential factor in the degenerative process of Parkinson's disease.  相似文献   

18.
Tyrosine hydroxylase's catalysis of tyrosine to dihydroxyphenylalanine (DOPA) is the highly regulated, rate-limiting step catalyzing the synthesis of the catecholamine neurotransmitter dopamine. Phosphorylation, cofactor-mediated regulation, and the cell's redox status, have been shown to regulate the enzyme's activity. This paper incorporates these regulatory mechanisms into an integrated dynamic model that is capable of demonstrating relative rates of dopamine synthesis under various physiological conditions. Most of the kinetic equations and substrate parameters used in the model correspond with published experimental data, while a few which were not available in literature have been optimized based on explicit assumptions. This kinetic pathway model permits a comparison of the relative regulatory contributions made by variations in substrate, phosphorylation, and redox status on enzymatic activity and permits predictions of potential disease states. For example, the model correctly predicts the recent observation that individuals with haemochromatosis and having excessive iron accumulation are at increased risk for acquiring Parkinsonism, a defect in neuronal dopamine synthesis (Bartzokis et al., 2004; Costello et al., 2004). Alpha synuclein mediated regulation of tyrosine hydroxylase has also been incorporated in the model, allowing an insight into the over-expression and aggregation of alpha synuclein in Parkinson's disease. Action Editor: Upinder Bhalla  相似文献   

19.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is inhibited in vitro by catecholamines binding to two distinct sites on the enzyme. The N-terminal regulatory domain of TH contributes to dopamine binding to the high affinity site of the enzyme. We prepared an N-terminal deletion mutant of TH to examine the role of the N-terminal domain in dopamine binding to the low affinity site. Deletion of the N-terminus of TH removes the high affinity dopamine binding site, but does not affect dopamine binding to the low affinity site. The role of the low affinity site in situ was examined by incubating PC12 cells with L-DOPA to increase the cytosolic catecholamine concentration. This resulted in an inhibition of TH activity in situ under both basal conditions and conditions that promoted the phosphorylation of Ser40. Therefore the low affinity site is active in situ regardless of the phosphorylation status of Ser40.  相似文献   

20.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号