首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of residence time (3-12 min), stirrer speed (0-800 rpm), and NaOH concentration (0.25-1.0 wt% of oil) on the production performance of the designed 6-stage continuous reactor (2.272 l) for transesterification of palm oil were investigated at molar ratio of methanol to oil of 6:1 and temperature of 60 degrees C. Higher stirrer speed increased the reaction rate up to an appropriate speed but excessive stirrer speed decreased the reaction rate. Inappropriate stirrer speed runs dramatically decreased the production capacity of the reactor. Higher NaOH concentration significantly increased reaction rate and production capacity of the reactor. The reactor had a residence time distribution equivalent to 5.98 ideal CSTRs in series and a production performance equivalent to a plug flow reactor. At NaOH of 1.0 wt% of oil, the reactor could produce saleable biodiesel within residence time of 6 min in which a production capacity was 17.3 l/h and a power consumption of stirrer was 0.6 kW/m(3).  相似文献   

2.
3.
4.
Substrate transfer rates from organic to aqueous phases were measured in the presence and absence of biocatalyst in the reaction medium, using modified Lewis cells. These measurements, in combination with intrinsic aqueous phase biocatalytic reaction kinetics, were used to confirm that benzyl acetate hydrolysis by pig liver esterase and toluene oxidation by a strain of Pseudomonas putida occur uniformly throughout the bulk of the aqueous phase. Such data may be used to provide a basis for two-liquid-phase biocatalytic reactor design.  相似文献   

5.
A novel recycle reactor has been designed to determine the interfacial activity of hydroxynitrile lyase in a diisopropyl ether (DIPE)/water two-phase system. The reactor provides a known interfacial area. Enzyme activity toward mandelonitrile cleavage is continuously measured in the reactor by following benzaldehyde product formation in the DIPE organic phase with an optical flow cell. For the first time, we establish that this enzymatic reaction is carried out by the hydroxynitrile lyase residing at the organic solvent/water interface and not in the aqueous bulk phase. Hydroxynitrile lyase adsorbs at the interface and exhibits extraordinary stability. Denaturation does not occur over several hours, although the surface pressure increases under the same conditions over this time span. Increases in surface pressure indicate enzyme penetration through the interface although no loss of enzyme activity is observed. Adsorption of p-Hnl at the interface is fit by the Langmuir equilibrium adsorption model with an adsorption equilibrium constant of 0.032 L mg(-1). For the mandelonitrile-cleavage reaction at ambient temperature, p-Hnl follows Michaelis-Menten kinetics at the interface with a Michaelis constant of 14.4 mM and a specific activity close that for the bulk aqueous phase.  相似文献   

6.
Tryptophan synthesis was investigated in a two-phase system employing an organic liquid membrane. A diffusion cell was constructed to study the transport of the various components of the reaction through an organic layer of cyclohexane. The organic phase was supported by two polymeric membranes, and Aliquat-336 was used as the anion exchanger. A differential in pH was maintained between the aqueous phases to facilitate extraction of the product from the reaction phase. A mathematical model was developed to estimate effective diffusivities and predict the sensitivity of the system to changes in the partition coefficients and liquid membrane thickness. The use of liquid membrane emulsion-type reactors is discussed.  相似文献   

7.
A mathematical model has been developed for the unsteady-state operation of an immobilized cell reactor. The substrate solution flows through a mixed-flow reactor in which cells immobilized in gel beads are retained. The substrate diffuses from the external surface of the gel beads to some internal location where reaction occurs. The product diffuses from the gel beads into liquid medium which flows out of the reactor. The model combines simultaneous diffusion and reaction, as well as cell growth, and it can predict how the rates of substrate consumption, product formation, and cell growth vary with time and with initial conditions. Ethanol fermentation was chosen as a representative reaction in the immobilized cell reactor, and numerical calculations were carried out. Excellent agreement was observed between model predictions and experimental data available in the literature.  相似文献   

8.
研究了微水-有机溶剂两相体系中固定化脂肪酶催化的萘甲酯的立体选择性水解反应,固定化酶活性受载体极性、水含量、有机溶剂的logP值,产物抑制的影响,据此构建了一种可以连续拆分产生(S)-(+)-萘普生的微水-有机溶剂两相体系。反应在一个具有回路的连续流搅拌反应器中进行,反应器中添加有采用吸附法固定化的脂肪酶,截体为一种弱极性的合成载体,水相连同固定化酶颗粒一起永久保持在反应器中,有机流动相带入底物,  相似文献   

9.
In this study, an ADM1-based distributed parameter model was validated using experimental results obtained in a laboratory-scale 10 L UASB reactor. Sensitivity analysis of the model parameters was used to select four parameters for estimation by a numerical procedure while other parameters were accepted from ADM1 benchmark simulations. The parameter estimation procedure used measurements of liquid phase components obtained at different sampling points in the reactor and under different operating conditions. Model verification used real time fluorescence-based measurements of chemical oxygen demand and volatile fatty acids at four sampling locations in the reactor. Overall, the distributed parameter model was able to describe the distribution of liquid phase components in the reactor and adequately simulated the effect of external recirculation on degradation efficiency. The model can be used in the design, analysis and optimization of UASB reactors.  相似文献   

10.
A new microfluorometer with a special fiberoptic for the simultaneous detection of two different wavelengths was developed. Several tracers were tested for reactor characterization at different wavelengths, and the influence of the pH value and culture medium components on fluorescence was studied. In CST bioreactors, the effect of aeration rate and stirrer speed on the fluorescence can be used for reactor characterization. Mixing time experiments were performed in two different bubble columns.  相似文献   

11.
A mixing model is coupled with fermentation kinetics in order to simulate a fermentation as a function of mixing conditions and scale-up. The mixing model for a batch stirred tank with three stirrers consists of three regions, each of them characterized by an ideally mixed compartment around the stirrer and two macromixers, i.e. cascades of tank-in-series, describing the recirculation flow. The model contains four parameters — radial and axial circulation time, volume of the ideally mixed stirrer compartment and the number of tanks in each cascade. These values, determined by Mayr et al. in function of the operational conditions and scale-up, were choosen to simulate the fermentation of glutamic acid to show the pH-fluctuation at different control and scale conditions. By choosing optimal regulation properties, such as input flow rate and/or concentration of the base, regulation span, position of the pH-electrode and base input location, etc., fluctuations of the pH-value in the bio-reactor can be minimized. However, the negative effect of insufficient mixing conditions can be reduced only by an increasing number of the base input places. In large scale fermentors, the axial circulation time is rather high, about 5–10 times larger than the radial one. This might result in a large amplitude of the pH-fluctuation. As it is shown, using an input place for base in each stirrer region, the negative impact of the insufficient axial mixing on the fermentation can be diminished perfectly. In this case ammonia should be fed into the reactor as an aqueous solution.  相似文献   

12.
A perfusion basket reactor (BR) was developed for the continuous utilization of insolubilized laccase as cross‐linked enzyme aggregates (CLEAs). The BR consisted of an unbaffled basket made of a metallic filtration module filled with CLEAs and continuously agitated by a 3‐blade marine propeller. The agitation conditions influenced both the apparent laccase activity in the reactor and the stability of the biocatalyst. Optimal laccase activity was obtained at a rotational speed of 12.5 rps and the highest stability was reached at speeds of 1.7 rps or lower. The activity and stability of the biocatalyst were affected drastically upon the appearance of vortices in the reaction medium. This reactor was used for the continuous elimination of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA), and triclosan (TCS). Optimization of EDC elimination by laccase CLEAs as a function of temperature and pH was achieved by response surface methodology using a central composite factorial design. The optimal conditions of pH and temperature were, respectively, 4.8 and 40.3°C for the elimination of p353NP (a branched isomer of NP), 4.7 and 48.0°C for BPA, and 4.9 and 41.2°C for TCS. Finally, the BR was used for the continuous elimination of these EDCs from a 5 mg L?1 aqueous solution using 1 mg of CLEAs at pH 5 and room temperature. Our results showed that at least 85% of these EDCs could be eliminated with a hydraulic retention time of 325 min. The performances of the BR were quite stable over a 7‐day period of continuous treatment. Furthermore, this system could eliminate the same EDCs from a 100 mg L?1 solution. Finally, a mathematical model combining the Michaelis–Menten kinetics of the laccase CLEAs and the continuous stirred tank reactor behavior of the BR was developed to predict the elimination of these xenobiotics. Biotechnol. Bioeng. 2009;102: 1582–1592. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
The stereospecific hydrolysis of D ,L -phenylalanine methylester with immobilized α-chymotrypsin was carried out as a model reaction for the racemate resolution of aromatic amino acids in a five staged fluidized-bed reactor (FBR). Owing to ester hydrolysis, a pH shift occurred along the reactor. Because of the pH-dependent enzyme activity a particular longitudinal pH profile had to be enforced by a proper entrance pH in order to gain an optimum conversion. In the FBR with optimum pH profile, higher conversions were achieved than in a continuous stirred tank reactor (CSTR) at the pH optimum and at the same contact time. By the application of a proton balance and the results of kinetic measurements a model was developed for the prediction of the optimum longitudinal pH profile with regard to the maximum conversion.  相似文献   

14.
Mixed culture of microorganisms immobilized onto Celite diatomaceous earth particles were used to degrade 3,4-dichloroaniline (34DCA) in a three-phase draft tube fluidized bed bioreactor. Biodegradation was confirmed as the dominant removal mechanism by measurements of the concomitant chloride ion evolution. Degradation efficiencies of 95% were obtained at a reactor retention time of 1.25 h. A mathematical model was used to describe the simultaneous diffusion and reaction of 34DCA and oxygen in the biofilms on the particles in the reactor. The parameters describing freely suspended cell growth on 34DCA were obtained in batch experiments. The model was found to describe the system well for three out of four steady states and to predict qualitatively the experimentally observed transition in the biofilm kinetics from 34DCA to oxygen limitation.  相似文献   

15.
The performance (activity, stability, enantioselectivity and productivity) of the commercial ketoreductase immobilized on non-porous glass supports was investigated as functions of the water activity and the reaction temperature in a continuous gas phase reactor. The enantioselective reduction of 2-butanone to (S)-2-butanol with the in situ regeneration of β-nicotinamide adenine dinucleotide phosphate by 2-propanol catalyzed by the immobilized ketoreductase was used as a model reaction. The activity, stability and enantioselectivity were strongly influenced by the water activity and the reaction temperature. The optimal water activity and reaction temperature were obtained at 0.8 and 313–323 K in terms of the productivity, respectively. Successfully, the enantioselectivity for the gas phase system attained the level identical to that for the aqueous phase system.  相似文献   

16.
Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity.  相似文献   

17.
Optically active epoxides can be obtained by kinetic resolution of racemic mixtures using enantioselective epoxide hydrolases. To increase the productivity of the conversion of sparingly aqueous soluble epoxides, we investigated the use of a two-phase aqueous/organic system. A kinetic model which takes into account interphase mass transfer, enzymatic reaction, and enzyme inactivation was developed to describe epoxide conversion in the system by the epoxide hydrolase from Agrobacterium radiobacter. A Lewis cell was used to determine model parameters and results from resolutions carried out in the Lewis cell were compared to model predictions to validate the model. It was found that n-octane is a biocompatible immiscible solvent suitable for use as the organic phase. Good agreement between the model predictions and experimental data was found when the enzyme inactivation rate was fitted. Simulations showed that mass transfer limitations have to be avoided in order to maximize the yield of enantiomerically pure epoxide. Resolution of a 39 g/L solution of racemic styrene oxide in octane was successfully carried out in an emulsion batch reactor to obtain (S)-styrene oxide in high enantiomeric excess (>95% e.e.) with a yield of 30%.  相似文献   

18.
A population balance model was developed for wheat starch hydrolysis to simulate the performance parameters of a viscosity-based device, known as the Falling Number instrument. The instrument is widely used as an indirect means to gauge the level of preharvest sprout activity in cereal grains such as wheat and barley. The model consists of three competing kinetics: starch gelatinization, enzymatic hydrolysis, and enzyme thermal deactivation. Using established principles of starch rheology and fluid mechanics, the model simulates the velocity profiles of the falling stirrer, starch gel viscosity, and the Falling Number readings at various levels of alpha-amylase. Model predictions for the velocity of the stirrer at any time during the downward fall, as well as the prediction of the total time needed for the fall, defined as the Falling Number, were in fair agreement with experimental measurements. There was better agreement between the modeled viscosity and the final viscosity of the starch gel as measured by a precision rheometer than there was with the measured Falling Number.  相似文献   

19.
Cometabolic degradation of trichloroethylene in a bubble column bioscrubber   总被引:1,自引:0,他引:1  
A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s(-1) and TCE gas phase loads between 0.07 and 0.40 mg L(-1) Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. (c) 1995 John Wiley & Sons Inc.  相似文献   

20.
Recently, considerable interest has been shown in the study and analysis of immobilized cell reactors. One of the major uses of such a reactor system is expected to be in ethanol production from carbohydrates. One distinct disadvantage of this system is carbon dioxide gas holdup associated with unsteady-state temperature distribution across the reactor. Taking into account the earlier published data and assuming steady-state-substrate balance, and unsteady-state energy balance, and an average gas holdup of 20% with the heat retained by the gas neglected, the average reaction rate in the differential element was computed. Finally, a mathematical model to predict steady-state temperature profile along the reactor was developed. It was verified with experimental data obtained from an immobilized yeast reactor column (1 m x 14.5 cm). The experimental data fit well those computed from the model within an accuracy of 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号