首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type III protein secretion in Pseudomonas syringae   总被引:1,自引:0,他引:1  
The type III secretion system is an essential virulence system used by many Gram-negative bacterial pathogens to deliver effector proteins into host cells. This review summarizes recent advancements in the understanding of the type III secretion system of Pseudomonas syringae, including regulation of the type III secretion genes, assembly of the Hrp pilus, secretion signals, the putative type III effectors identified to date, and their virulence action after translocation into plant cells.  相似文献   

2.
Hayward RD  Koronakis V 《Cell》2006,124(1):15-17
Many bacterial pathogens use a specialized "type III" secretion system to deliver virulence effector proteins into host mammalian cells. In this issue of Cell, Alto et al. (2006) describe a new family of effectors that share a WxxxE sequence motif. These effectors directly stimulate host signaling pathways by mimicking activated Ras-like cellular GTPases.  相似文献   

3.
Bacterial pathogens are dependent on virulence factors to efficiently colonize and propagate within their hosts. Many Gram-negative bacterial pathogens rely on specialized proteinaceous secretion systems that inject virulence factors, termed effectors, directly into host cells. These bacterial effector proteins perform various functions within host cells; however, regulation of their function within the host cell is highly enigmatic. It is becoming increasingly apparent that many of these effectors directly influence and regulate each other and their mechanisms within the host cell. We discuss the emerging theme of bacterial effector interplay impacting infection and the importance of investigating this topic.  相似文献   

4.
Type IV secretion systems and their effectors in bacterial pathogenesis   总被引:2,自引:0,他引:2  
Type IV secretion systems (T4SSs) are membrane-associated transporter complexes used by various bacteria to deliver substrate molecules to a wide range of target cells. T4SSs are involved in horizontal DNA transfer to other bacteria and eukaryotic cells, in DNA uptake from or release into the extracellular milieu, in toxin secretion and in the injection of virulence factors into eukaryotic host target cells by several mammalian pathogens. Rapid progress has been made towards defining the structures and functions of T4SSs, identifying the translocated effector molecules and elucidating the mechanisms by which the effectors subvert eukaryotic cellular processes during infection. These findings have had an important impact on our understanding of how these pathogens manipulate host cell functions to trigger bacterial uptake, facilitate intracellular growth and suppress defence mechanisms, thus facilitating bacterial colonization and disease development.  相似文献   

5.
Many bacterial pathogens employ multicomponent protein complexes to deliver macromolecules directly into their eukaryotic host cell to promote infection. Some Gram-negative pathogens use a versatile Type IV secretion system (T4SS) that can translocate DNA or proteins into host cells. T4SSs represent major bacterial virulence determinants and have recently been the focus of intense research efforts designed to better understand and combat infectious diseases. Interestingly, although the two major classes of T4SSs function in a similar manner to secrete proteins, the translocated 'effectors' vary substantially from one organism to another. In fact, differing effector repertoires likely contribute to organism-specific host cell interactions and disease outcomes. In this review, we discuss the current state of T4SS research, with an emphasis on intracellular bacterial pathogens of humans and the diverse array of translocated effectors used to manipulate host cells.  相似文献   

6.
Several medically important Gram-negative bacterial pathogens inject virulence factors into host cells through a type III secretion system and specialized bacterial chaperones are required for their effective delivery. Recent structural work shows that these chaperones maintain virulence factors in a partially non-globular conformation that is primed for unfolding and translocation through the 'injectisome'.  相似文献   

7.
Common themes in microbial pathogenicity revisited.   总被引:22,自引:0,他引:22       下载免费PDF全文
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics.  相似文献   

8.
Bacterial pathogens achieve the internalization of a multitude of virulence factors into eukaryotic cells. Some secrete extracellular toxins which bring about their own entry, usually by hijacking cell surface receptors and endocytic pathways. Others possess specialized secretion and translocation systems to directly inject bacterial proteins into the host cytosol. Recent advances in the structural biology of these virulence factors has begun to reveal at the molecular level how these bacterial proteins are delivered and modulate host activities ranging from cytoskeletal structure to cell cycle progression.  相似文献   

9.
Pseudomonas syringae strains deliver diverse type III effector proteins into host cells, where they can act as virulence factors. Although the functions of the majority of type III effectors are unknown, several have been shown to interfere with plant basal defense mechanisms. Type III effectors also could contribute to bacterial virulence by enhancing nutrient uptake and pathogen adaptation to the environment of the host plant. We demonstrate that the type III effector HopAM1 (formerly known as AvrPpiB) enhances the virulence of a weak pathogen in plants that are grown under drought stress. This is the first report of a type III effector that aids pathogen adaptation to water availability in the host plant. Expression of HopAM1 makes transgenic Ws-0 Arabidopsis hypersensitive to abscisic acid (ABA) for stomatal closure and germination arrest. Conditional expression of HopAM1 in Arabidopsis also suppresses basal defenses. ABA responses overlap with defense responses and ABA has been shown to suppress defense against P. syringae pathogens. We propose that HopAM1 aids P. syringae virulence by manipulation of ABA responses that suppress defense responses. In addition, host ABA responses enhanced by type III delivery of HopAM1 protect developing bacterial colonies inside leaves from osmotic stress.  相似文献   

10.
Plant pathogens deliver a variety of virulence factors to host cells to suppress basal defence responses and create suitable environments for their propagation. Plants have in turn evolved disease resistance genes whose products detect the virulence factors as a signal of invasion and activate effective defence responses. Understanding how a virulence effector contributes to virulence on susceptible hosts but becomes an avirulence factor that triggers defence responses on resistance hosts has been a major focus in plant research. Recent studies have shown that a growing list of pathogen-encoded effectors functions as proteases that are secreted into plant cells to modify host proteins. In addition, several plant proteases have been found to function in activation of the defence mechanism. These findings reveal that post-translational modification of host proteins through proteolytic processing is a widely used mechanism in regulating the plant defence response.  相似文献   

11.

Background  

Type III secretion systems (T3SS) are essential virulence factors of most Gram-negative bacterial pathogens. T3SS deliver effector proteins directly into the cytoplasm of eukaryotic target cells and for this function, the insertion of a subset of T3SS proteins into the target cell membrane is important. These proteins form hetero-oligomeric pores acting as translocon for the delivery of effector proteins. Salmonella enterica is a facultative intracellular pathogen that uses the Salmonella Pathogenicity Island 2 (SPI2)-encoded T3SS to manipulate host cells in order to survive and proliferate within the Salmonella-containing vacuole of host cells. Previous work showed that SPI2-encoded SseB, SseC and SseD act to form the translocon of the SPI2-T3SS.  相似文献   

12.
Many Gram-negative pathogens translocate virulence proteins directly into host cells using a type III secretion system. This complex secretion machinery is composed of approximately 25 different proteins that assemble to span both bacterial membranes, and contact the host cell to form a direct channel between the bacterial and host cell cytoplasms. Assembly of the system and efficient secretion of virulence proteins through this apparatus require specific chaperones. Although the machinery is morphologically conserved among all bacteria, the secreted proteins vary widely and are responsible for the range of diseases caused by bacterial pathogens. Recent structures have given insights into important chaperone and effector proteins, as well as revealing the first atomic structures of portions of the secretion machinery itself.  相似文献   

13.
Extracellular or surface localization of virulence determinants is an important attribute of pathogenic microorganisms. The past decade has seen significant research advances in defining the steps and identifying the necessary machinery for protein secretion from bacterial cells. In Gram-negative pathogens, four distinct classes of secretion pathways have been identified that deliver virulence factors to their sites of action. These pathways are responsible for the delivery of soluble extracellular enzymes into the surrounding medium, or for specifically targeting proteins to the host cell. In several instances protein secretion pathways are similar to those involved in assembly of bacterial appendages. Combination of biochemical and genetic analyses has recently revealed that the pathways of protein secretion and surface localization of various organelles are mechanistically similar which was not apparent simply by comparing amino acid sequences of related proteins. The choice of the pathway that a protein will utilize may not be dictated only by the specific requirement of the secreted protein to traverse the cell envelope in the functional form, but also by the need to assure its delivery to the correct site of action outside the bacterial cell.  相似文献   

14.
Valuable insights into eukaryotic regulatory circuits can emerge from studying interactions of bacterial pathogens such as Helicobacter pylori with host tissues. H. pylori uses a type IV secretion system (T4SS) to deliver its CagA virulence protein to epithelial cells, where much of it becomes phosphorylated. CagA's phosphorylated and non-phosphorylated forms each interact with host regulatory proteins to alter cell structure and cell fate. Kwok and colleagues showed that CagA destined for phosphorylation is delivered using host integrin as receptor and H. pylori's CagL protein as an integrin-specific adhesin, and that CagL-integrin-binding activates the kinase cascade responsible for CagA phosphorylation. This research contributes to understanding infectious disease and the control of cell fates.  相似文献   

15.
Many bacterial pathogens of plants and animals use a type III secretion system (TTSS) to deliver virulence effector proteins into host cells. Because effectors are heterogeneous in sequence and function, there has not been a systematic way to identify the genes encoding them in pathogen genomes, and our current inventories are probably incomplete. A pre-closure draft sequence of Pseudomonas syringae pv. tomato DC3000, a pathogen of tomato and Arabidopsis, has recently supported five complementary studies which, collectively, identify 36 TTSS-secreted proteins and many more candidate effectors in this strain. These studies demonstrate the advantages of combining experimental and computational approaches, and they yield new insights into TTSS effectors and virulence regulation in P. syringae, potential effector targeting signals in all TTSS-dependent pathogens, and strategies for finding TTSS effectors in other bacteria that have sequenced genomes.  相似文献   

16.
Shin S  Roy CR 《Cellular microbiology》2008,10(6):1209-1220
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.  相似文献   

17.
Modulation of inflammasome pathways by bacterial and viral pathogens   总被引:1,自引:0,他引:1  
Inflammasomes are emerging as key regulators of the host response against microbial pathogens. These cytosolic multiprotein complexes recruit and activate the cysteine protease caspase-1 when microbes invade sterile tissues or elicit cellular damage. Inflammasome-activated caspase-1 induces inflammation by cleaving the proinflammatory cytokines IL-1β and IL-18 into their biologically active forms and by releasing the alarmin HMGB1 into the extracellular milieu. Additionally, inflammasomes counter bacterial replication and clear infected immune cells through an inflammatory cell death program termed pyroptosis. As a countermeasure, bacterial and viral pathogens evolved virulence factors to antagonize inflammasome pathways. In this review, we discuss recent progress on how inflammasomes contribute to host defense against bacterial and viral pathogens, and we review how viruses and bacteria modulate inflammasome function to their benefit.  相似文献   

18.
Entry into host cells is required for many bacterial pathogens to effectively disseminate within a host, avoid immune detection and cause disease. In recent years, many ostensibly extracellular bacteria have been shown to act as opportunistic intracellular pathogens. Among these are strains of uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections (UTIs). UPEC are able to transiently invade, survive and multiply within the host cells and tissues constituting the urinary tract. Invasion of host cells by UPEC is promoted independently by distinct virulence factors, including cytotoxic necrotizing factor, Afa/Dr adhesins, and type 1 pili. Here we review the diverse mechanisms and consequences of host cell invasion by UPEC, focusing also on the impact of these processes on the persistence and recurrence of UTIs.  相似文献   

19.
Bacterial virulence mechanisms are attractive targets for antibiotic development because they are required for the pathogenesis of numerous global infectious disease agents. The bacterial secretion systems used to assemble the surface structures that promote adherence and deliver protein virulence effectors to host cells could comprise one such therapeutic target. In this study, we developed and performed a high-throughput screen of small molecule libraries and identified one compound, a 2-imino-5-arylidene thiazolidinone that blocked secretion and virulence functions of a wide array of animal and plant Gram-negative bacterial pathogens. This compound inhibited type III secretion-dependent functions, with the exception of flagellar motility, and type II secretion-dependent functions, suggesting that its target could be an outer membrane component conserved between these two secretion systems. This work provides a proof of concept that compounds with a broad spectrum of activity against Gram-negative bacterial secretion systems could be developed to prevent and treat bacterial diseases.  相似文献   

20.
To successfully colonize plants, pathogens have evolved a myriad of virulence factors that allow them to manipulate host cellular pathways in order to gain entry into, multiply and move within, and eventually exit the host for a new infection cycle. In the past few years, substantial progress has been made in characterizing the host targets of viral and bacterial virulence factors, providing unique insights into basic plant cellular processes such as gene silencing, vesicle trafficking, hormone signaling, and innate immunity. Identification of the host targets of additional pathogen virulence factors promises to continue shedding light on fundamental cellular mechanisms in plants, thus enhancing our understanding of plant signaling, metabolism, and cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号