首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Z Cetin  S Yakut  E Mihci  AE Manguoglu  S Berker  I Keser  G Luleci 《Gene》2012,507(2):159-164
Pure partial trisomy of chromosome 21 is a rare event. The patients with this aberration are very important for setting up precise karyotype-phenotype correlations particularly in Down syndrome phenotype. We present here a patient with Down syndrome with a de novo derivative chromosome 21. Karyotype of the patient was designated as 46,XY,der(21)(p13)dup(21)(q11.2q21.3)dup(21)(q22.2q22.3) with regard to cytogenetic, FISH and array-CGH analyses. Non-continuous monosomic, disomic and trisomic chromosomal segments through the derivative chromosome 21 were detected by array-CGH analysis. STR analyses revealed maternal origin of the de novo derivative chromosome 21. The dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A) and Down Syndrome Critical Region 1 (DSCR1) genes that are located in Down syndrome critical region, are supposed to be responsible for most of the clinical findings of Down syndrome. However, our patient is the first patient with Down syndrome whose clinical findings were provided in detail, with a de novo derivative chromosome 21 resulting from multiple chromosome breaks excluding DYRK1A and DSCR1 gene regions.  相似文献   

4.
To increase candidate genes from human chromosome 21 for the analysis of Down syndrome and other genetic diseases localized on this chromosome, we have isolated and studied 9 cDNA clones encoded by chromosome 21. For isolating cDNAs, single-copy microclones from a chromosome 21 microdissection library were used in direct screening of various cDNA libraries. Seven of the cDNA clones have been regionally mapped on chromosome 21 using a comprehensive hybrid mapping panel comprising 24 cell hybrids that divide the chromosome into 33 subregions. These cDNA clones with refined mapping positions should be useful for identification and cloning of genes responsible for the specific component phenotypes of Down syndrome and other diseases on chromosome 21, including progressive myoclonus epilepsy in 21q22.3.  相似文献   

5.
We have isolated a highly polymorphic sequence from the Down syndrome critical region on human chromosome 21. This is a particularly useful marker because it lies adjacent to the locus D21S55, which is most closely associated with the major defects on Down syndrome. Other than this marker, few other variable sequences are known in this region (including other restriction fragment length polymorphisms or CA repeats) and therefore D21S1448 will be extremely helpful not only for people studying the inheritance of portions of chromosome 21 with respect to Down syndrome, but also for those carrying out linkage analysis of the chromosome.  相似文献   

6.
7.
Down syndrome (DS), trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. With an incidence in some countries as high as one in approximately 700 live births, and a complex, extensive and variably severe phenotype, Down syndrome is a significant medical and social challenge. In recent years, there has been a rapid increase in information on the functions of the genes of human chromosome 21, as well as in techniques and resources for their analysis. A recent workshop brought together experts on the molecular biology of Down syndrome and chromosome 21 with interested researchers in other fields to discuss advances and potentials for generating gene-phenotype correlations. An additional goal of the workshop was to work towards identification of targets for therapeutics that will correct features of DS. A knowledge-based approach to therapeutics also requires the correlation of chromosome 21 gene function with phenotypic features.  相似文献   

8.
9.
The human amyloid beta protein is the major constituent of the brain amyloid plaques found in Alzheimer disease. The gene that encodes this protein is located on chromosome 21, and individuals with Down syndrome (trisomy 21) also exhibit an early onset form of Alzheimer disease. We have used the cloned human amyloid beta protein gene and a panel of somatic cell hybrids to map the location of the mouse homolog of this gene. We report here that the mouse gene is located on chromosome 16 within the region 16C3----ter, in common with three other genes which map within the Down syndrome region of human chromosome 21.  相似文献   

10.
Chromosomal protein HMG-14 is overexpressed in Down syndrome.   总被引:2,自引:0,他引:2  
The physical phenotype of Down syndrome, one of the most prevalent genetic disorders, results from an extra copy of regions q22.1 to q22.3 of chromosome 21 in cells of affected individuals. The gene coding for chromosomal protein HMG-14 is among the limited number of genes, coding for known functions, which has been mapped to this region of chromosome 21. Here we report a gene dosage effect on the expression of HMG-14 in both cultured cells and brain tissue samples obtained from Down syndrome patients. The putative role of HMG-14 in the structure of active chromatin raises the possibility that elevated levels of this protein may be a contributing factor in the etiology of Down syndrome.  相似文献   

11.
Early diagnosis is very important in pre- and postnatal diagnosis of Down syndrome. This study examines the use of fluorescence in situ hybridization (FISH) to detect trisomy 21 in interphase nuclei and metaphase chromosome obtained from fifty-four Down syndrome patients with a regular type trisomy 21. Three of them showed six hybridization signals on both interphase nuclei and metaphase spreads instead of five signals corresponding to two chromosomes 13 and three chromosomes 21 although they were cytogenetically trisomy 21. Simultaneous application of probe combination revealed that one of the extra signals of chromosomes 13/21 a-satellite probe was located on chromosome 22 in two cases and one extra signal on chromosomes 15 in one case. In addition, another case showed four hybridization signals on both interphase nuclei and metaphase spreads instead of five signals, indicating deletion of the chromosome specific alpha-satellite DNA sequence of chromosome 13/21. These centromeric sequence changes may have pathological significance in the appearance of aneuploidy because they may be involved in the important centromere function.  相似文献   

12.
13.
Human trisomy 21 is the most frequent live-born human aneuploidy and causes a constellation of disease phenotypes classified as Down syndrome, which include heart defects, myeloproliferative disorder, cognitive disabilities and Alzheimer-type neurodegeneration. Because these phenotypes are associated with an extra copy of a human chromosome, the genetic analysis of Down syndrome has been a major challenge. To complement human genetic approaches, mouse models have been generated and analyzed based on evolutionary conservation between the human and mouse genomes. These efforts have been greatly facilitated by Cre/loxP-mediated mouse chromosome engineering, which may result in the establishment of minimal critical genomic regions and eventually new dosage-sensitive genes associated with Down syndrome phenotypes. The success in genetic analysis of Down syndrome will further enhance our understanding of this disorder and lead to better strategies in developing effective therapeutic interventions.  相似文献   

14.
15.
Segments of the long arm of human chromosome 21 are conserved, centromere to telomere, in mouse chromosomes 16, 17, and 10. There have been 28 genes identified in human chromosome 21 between TMPRSS2, whose orthologue is the most distal gene mapped to mouse chromosome 16, and PDXK, whose orthologue is the most proximal gene mapped to mouse chromosome 10. Only 6 of these 28 genes have been mapped in mouse, and all are located on chromosome 17. To better define the chromosome 17 segment and the 16 to 17 transition, we used a combination of mouse radiation hybrid panel mapping and physical mapping by mouse: human genomic sequence comparison. We have determined the mouse chromosomal location of an additional 12 genes, predicted the location of 7 more,and defined the endpoints of the mouse chromosome 17 region. The mouse chromosome 16/chromosome 17 evolutionary breakpoint is between human genes ZNF295 and UMODL1, showing there are seven genes in the chromosome 16 segment distal to Tmprss2. The chromosome 17/chromosome 10 breakpoint seems to have involved a duplication of the gene PDXK, which on chromosome 21 lies immediately distal to the KIAA0179 gene. These data suggest that there may be as few as 21 functional genes in the mouse chromosome 17 segment. This information is important for defining existing and constructing more complete mouse models of Down syndrome.  相似文献   

16.
17.
18.
Genetic linkage map of human chromosome 21   总被引:19,自引:0,他引:19  
Two of the most common disorders affecting the human nervous system, Down syndrome and Alzheimer's disease, involve genes residing on human chromosome 21. A genetic linkage map of human chromosome 21 has been constructed using 13 anonymous DNA markers and cDNAs encoding the genes for superoxide dismutase 1 (SOD1) and the precursor of Alzheimer's amyloid beta peptide (APP). Segregation of restriction fragment length polymorphisms (RFLPs) for these genes and DNA markers was traced in a large Venezuelan kindred established as a "reference" pedigree for human linkage analysis. The 15 loci form a single linkage group spanning 81 cM on the long arm of chromosome 21, with a markedly increased frequency of recombination occurring toward the telomere. Consequently, 40% of the genetic length of the long arm corresponds to less than 10% of its cytogenetic length, represented by the terminal half of 21q22.3. Females displayed greater recombination than males throughout the linkage group, with the difference being most striking for markers just below the centromere. Definition of the linkage relationships for these chromosome 21 markers will help refine the map position of the familial Alzheimer's disease gene and facilitate investigation of the role of recombination in nondisjunction associated with Down syndrome.  相似文献   

19.
20.
Distal mouse chromosome 16 (MMU16) shares conserved linkage with human chromosome 21 (HSA21), trisomy for which causes Down syndrome (DS). A 4.5-Mb physical map extending from Cbr1 to Tmprss2 on MMU16 provides a minimal tiling path of P1 artificial chromosomes (PACs) for comparative mapping and genomic sequencing. Thirty-four expressed sequences were positioned on the mouse map, including 19 that were not physically mapped previously. This region of the mouse:human comparative map shows a high degree of evolutionary conservation of gene order and content, which differs only by insertion of one gene (in mouse) and a small inversion involving two adjacent genes. "Low-pass" (2.2x) mouse sequence from a portion of the contig was ordered and oriented along 510 kb of finished HSA21 sequence. In combination with 68 kb of unique PAC end sequence, the comparison provided confirmation of genes predicted by comparative mapping, indicated gene predictions that are likely to be incorrect, and identified three candidate genes in mouse and human that were not observed in the initial HSA21 sequence annotation. This comparative map and sequence derived from it are powerful tools for identifying genes and regulatory regions, information that will in turn provide insights into the genetic mechanisms by which trisomy 21 results in DS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号