首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A temperature-sensitive mutant of human adenovirus type 2, ts112, was isolated and characterized, ts112 was blocked in a late function required for virus maturation. At restrictive temperature, it accumulated light precursor particles that were able to mature into infectious virions upon temperature shift-down. Use of a mild extraction procedure and a reversible fixation by a cleavable diimido ester permitted the isolation and analysis of these labile intermediates in the adenovirus assembly. These accumulated particles had a sedimentation coefficient of about 600S and a buoyant density of 1.315 g/cm3 in CsCl. They contained a DNA fragment of 7--11S and two nonvirion proteins having molecular weights of 50,000 (50K) and 39.000 (39K), respectively. They resembled in composition and morphology the light intermediate particles found in wild-type adenovirus 2, which were identified as precursors of heavy intermediates, preceding the young virions. The ts112 lesion was apparently located at the exit of either the 50K and/or 39K proteins and at the entry of viral DNA.  相似文献   

3.
4.
The human papillomavirus 1 (HPV-1) virion is composed of two virally encoded proteins: a 57,000-molecular-weight polypeptide (57K polypeptide), which is the product of the L1 open reading frame (ORF), and a 78K polypeptide, which is derived from the L2 ORF. The 57K (L1) product, which represents the major structural component, appears to be disulfide cross-linked in virus particles. The 78K (L2) protein is a minor component of the virion and does not appear to be disulfide linked either to the L1 gene product or to itself. Analysis of virus particles banding at different buoyant densities revealed differences in the L2 content of heavy-full and light-full virions. Antiserum prepared against a bacterially expressed fragment of the L1 ORF was found by immunofluorescence to cross-react with HPV-2 and bovine papillomavirus 1 virions in wart sections. No cross-reactivity was observed with antisera prepared against either the N- or C-terminal halves of the L2-encoded protein. Similarly, antisera prepared against purified virus particles (disrupted and nondisrupted) reacted only with an expressed fragment of the L1 ORF and not with either L2-encoded polypeptides or proteins derived from the E1, E2, E4, E6, or E7 ORFs. This indicates that the L1 protein contains the papillomavirus common antigens.  相似文献   

5.
Genes encoding the core proteins of adenovirus type 2   总被引:7,自引:0,他引:7  
The nucleotide sequence of the HindIII-D fragment of adenovirus type 2 has been determined. The sequence, which is located between coordinates 41.8 and 51.0, covers most of the L2 cotermination family. It includes three major open translational reading frames encoding the carboxyl-terminal part of the penton base as well as the major core polypeptides V and VII. An additional minor open translational reading frame encoding a highly basic polypeptide was detected in the sequence. The L2 region has a very compact organization with very short distances between the different genes, although no overlapping coding sequences were found. The predicted amino acid sequences of core proteins V and VII reveal that they are highly basic proteins and polypeptide VII resembles the arginine-rich H4 histones in its amino acid composition, but no striking similarities are apparent at the amino acid sequence level. The candidate polypeptide encoded by the newly discovered translational reading frame contains 29% basic residues and includes a hypothetical recognition sequence for the adenovirus-encoded endopeptidase. In conjunction with previously published sequences and those reported in accompanying papers (Akusj?rvi, G., Alestr?m, P., Pettersson, M., Lager, M., J?rnvall, H., and Pettersson, U. (1984) J. Biol. Chem. 259, 13976-13979; Roberts, R. J., O'Neill, K. E., and Yen, C. E. (1984) J. Biol. Chem. 259, 13965-13975) a complete sequence can now be reconstructed for the 35,937-base pairs adenovirus type 2 genome.  相似文献   

6.
The ts16 mutation of vaccinia virus WR (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) has been mapped by marker rescue to the I7L open reading frame located within the genomic HindIII I DNA fragment. The I7 gene encodes a 423-amino-acid polypeptide. Thermolabile growth was attributed to an amino acid substitution, Pro-344-->Leu, in the predicted I7 protein. A normal temporal pattern of viral protein synthesis was elicited in cells infected with ts16 at the nonpermissive temperature (40 degrees C). Electron microscopy revealed a defect in virion assembly at 40 degrees C. Morphogenesis was arrested at a stage subsequent to formation of spherical immature particles. Western immunoblot analysis with antiserum directed against the I7 polypeptide demonstrated an immunoreactive 47-kDa polypeptide accumulating during the late phase of synchronous vaccinia virus infection. Immunoblotting of extracts of wild-type virions showed that the I7 protein is encapsidated within the virus core. The I7 polypeptide displays amino acid sequence similarity to the type II DNA topoisomerase of Saccharomyces cerevisiae.  相似文献   

7.
8.
The nature, polypeptide composition, and antigenic composition of the particles formed by six human adenovirus type 2 temperature-sensitive (ts) mutants were studied. ts115, ts116, and ts125 were phenotypically fiber-defective mutants, and ts103, ts104, and ts136 failed to synthesize detectable amounts of fiber plus penton base at 39.5 degrees C. The mutants belonged to five complementation groups, one group including ts116 and ts125. Except for ts103 and ts136, the other mutants were capable of producing particles at 39.5 degrees C. ts116 and ts125 accumulated light assembly intermediate particles (or top components) at nonpermissive temperatures, with few virus particles. The sodium dodecyl sulfate polypeptide pattern of ts116- or ts125-infected cells, intermediate particles, and virus particles showed that polypeptide IV (fiber) was smaller by a molecular weight of 2,000 than that in the wild-type virion and was glycosylated. In fiber plus penton base-defective ts104-infected cells, equivalent quantities of top components and viruses with a buoyant density (rho) of 1.345 g/ml (rho = 1.345 particles) were produced at 39.5 degrees C. These rho = 1.345 particles corresponded to young virions, as evidenced by the presence of uncleaved precursors to proteins VI, VIII, and VII. These young virions matured upon a shift down. Virus capsid vertex antigenic components underwent a phase of eclipse during their incorporation into mature virus particles. No antigenic penton base or IIa was detected in intermediate particles of all the ts mutants tested. Only hexon and traces of fiber antigens were found in ts104 young virions. Penton base and IIIa appeared as fully antigenically expressed capsid subunits in mature wild-type virions or ts104 virions after a shift down. The ts104 lesion is postulated to affect a regulatory function related in some way to penton base and fiber overproduction and the maturation processing of precursors PVI, PVII, and PVII.  相似文献   

9.
The mutant adenoviruses H5sub304 and H5RIr were isolated sequentially from adenovirus 5 wild type by selection for the loss of EcoRI restriction endonuclease sites by Jones and Shenk (Cell 13:181-188, 1978). sub304 lacks the site at 84.0 map units (m.u.), and RIr lacks both that and the site at 75.9 m.u. A set of derivatives of RIr that lack the site at 75.9 m.u. accumulated virus more slowly at 38.8 or 39.5 degrees C than those with the site present, as measured by low-multiplicity passage or single-step replication cycles, respectively. Since the EcoRI site at 75.9 m.u. is predicted to lie in the gene encoding the precursor to virion polypeptide VIII (pVIII), the failure to accumulate virus rapidly could lie either in some step in processing and assembly of virions or in an increased virion thermolability. The latter possibility was shown to be the case, as all strains mutated at the EcoRI 75.9 m.u. site were extremely thermolabile in vitro, even at 37 degrees C. CsCl equilibrium density centrifugation of heated crude stocks of RIr and sub304 demonstrated that loss of infectivity in RIr was accompanied by physical disruption of virions. Polyacrylamide gel electrophoresis of infected cell extracts or of purified virions showed that pVIII of RIr had an apparent molecular weight that was slightly greater than that of sub304, and mature RIr and sub304 virions displayed polypeptide VIIIs which appeared to be of identical molecular weights. Nucleotide sequence analysis of RIr demonstrated that it contained a 9-base-pair (bp) substitution for 6 bp found in sub304, leading to a loss of the EcoRI site and a predicted insertion of a single amino acid. Comparison of the sequence of sub304 with the published sequence of adenovirus 2 revealed two changes, a single transversion at bp 1,722 and a bp deletion at 1,749, leading to the loss of a TaqI site. The predicted reading frame change would lead to a stop codon at bp 1,885. This raises the question of whether adenovirus 2 and adenovirus 5 use the same reading fame for pVIII.  相似文献   

10.
A variant of adenovirus type 5 that contained a mutation within the L1 52- and 55-kilodalton (52/55K) protein-coding region was isolated. The mutant, termed ts369, produced L1 52/55K proteins with a two-amino-acid substitution and was temperature sensitive. Temperature-shift experiments indicated that the ts369 defect was late in the viral growth cycle. DNA replication and synthesis of late proteins occurred normally in ts369-infected cells at the nonpermissive temperature, but mature virions were not produced. Rather, capsidlike particles associated with the left-terminal region of the viral chromosome accumulated. These incomplete particles could not be chased into mature virions when the infected cells were shifted to the permissive temperature. However, previously synthesized proteins could be assembled into virions in the presence of a protein synthesis inhibitor upon shiftdown from the nonpermissive temperature, suggesting that the inactivation of the L1 52/55K proteins was reversible. These results indicate that the adenovirus L1 52/55K proteins play a role in the assembly of infectious virus particles.  相似文献   

11.
The interactions of the major core protein of adenovirus type 2 (Ad2) protein VII, and its precursor, protein pre-VII, with viral DNA, were studied using UV light induced crosslinking of 32P-labelled oligonucleotides to the proteins. Proteolytic fragments of these two proteins that contain DNA-binding domains were identified by virtue of their covalently attached, alkali-resistant 32P-radioactivity. The overall efficiency of crosslinking of protein pre-VII to DNA, in H2ts1 virions assembled at 39 degrees C, was comparable to that of the crosslinking of protein VII to DNA in Ad2 virions. However, a protease V8 fragment comprising the N-terminal half of protein pre-VII crosslinked to DNA at least ten times more efficiently than the corresponding N-terminal fragment of protein VII, which is truncated by the removal of 23 amino acids from the N-terminus of protein pre-VII during virion maturation.  相似文献   

12.
The mRNA species encoded by early region 4 (E4) (map position [mp] 91.5 to 99.3) of adenovirus 2 were isolated from the polysomes of infected KB cells and were purified by hybridization to the cloned HindIII-F fragment (mp 89.5 to 97.3) or to EcoRI-C fragment (mp 89.7 to 100). The mRNA's were translated in vitro using [35S]methionine as a labeled precursor in rabbit reticulocyte lysates treated with micrococcal nuclease as well as in wheat germ lysates. Five major (35,000-molecular-weight [35K], 23K, 22K, 21K, 18K) polypeptides were observed when the reticulocyte lysate was used. The 23K, 22K, 21K, and 18K polypeptides were also observed with the wheat germ lysate, as well as a very prominent 11K polypeptide; the 35K polypeptide was not observed. Assignment of these polypeptides to E4 was further established by hybrid arrested translation. Two-dimensional gel electrophoresis of a wheat germ translate resolved five polypeptides ranging from 18K to 23K, the major 11K polypeptide, and polypeptides of 10K and 9K. The in vitro 23K to 18K and 11K polypeptides migrated to approximately the same positions on two-dimensional gels as did seven 26K to 21K polypeptides and an 11K polypeptide synthesized in vivo (Brackmann et al., J. Biol. Chem, 255:6772--6779, 1980). Two-dimensional tryptic peptide maps demonstrated that the 35K, 23K, 22K, 21K, and 18K polypeptides are related. The peptide map of 11K is different from those of the above polypeptides, although 11K may share one tryptic methionine polypeptide with them. These results indicate that E4 encodes a major 11K polypeptide, as well as major 35K, 23K, 22K, 21K, and 18K polypeptides.  相似文献   

13.
14.
The sequence of 4.4 kilobase pairs (kbp) from the conventional right terminus of the A + T-rich light-DNA (L-DNA) sequences of the herpesvirus saimiri (HVS) genome contains a leftward-directed open reading frame (ORF) for a 1,299-residue protein. The molecular weight predicted for the protein (143,000) is in good agreement with the estimates of 150,000 to 160,000 for the major nonglycosylated polypeptide of the virion tegument (the 160K polypeptide), previously shown to be encoded by this region of the genome. The first initiation codon of the ORF is only 250 nucleotides from the junction of the L-DNA component with the G + C-rich terminal reiterations (i.e., heavy or H-DNA) of the genome. An unusually A + T-rich sequence (43 of 45 nucleotides are A or T, relative to a mean composition of 40% G + C for the ORF) occurs some 75 bp 5' to this initiation codon, and the first adenylation signal (AATAAA) on this DNA strand occurs 18 bp 3' to the termination codon. The amino acid sequence predicted for the 160K protein of HVS is homologous over most of its length to the 1,318-residue protein encoded by the leftmost major ORF of the G + C-rich genome of Epstein-Barr virus (BNRF1, the 140K nonglycosylated membrane antigen). No homology to either of these proteins is evident among the products predicted from the complete sequence of the alpha herpesvirus varicella-zoster virus. Thus gamma herpesviruses with coding sequences which differ in mean nucleotide composition by some 20% G + C have homologous proteins encoded at similar positions with respect to genome termini, with the right end of HVS being homologous to the left end of Epstein-Barr virus.  相似文献   

15.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

16.
Using sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis of [35S]methionine-labeled adenovirus type 2-infected KB cell extracts, a total of 23 virus-induced polypeptides was detected. This technique was applied to the analysis of the temperature-sensitive mutant, ts 1, which has previously been shown to be defective in a late function. By means of pulse-chase experiments, ts 1 was shown to be defective in the processing of the precursor polypeptide (Pre VII) to the major core protein VII. Two other putative precursor polypeptides, Va (27K) and Vb (24K), were also not processed. Thus, the ts 1 mutation blocked the appearance of six post-translational clevage products, i. e., polypeptides VI, VII, VIII, X, XI, and XII. All of these polypeptides are virion components. Processing was temperature sensitive in a shift-up experiment, whereas it was normal in a shift-down experiment. The kinetics of the temperature-shift experiments suggested that infectious virus could be recovered if enough time is provided for processing to take place. Processing was not inhibited by cycloheximide. The analysis of purified virus particles and empty shells (TCs) revealed the presence of the precursor and putative precursor polypeptides Pre-VII, Va and Vb, instead of their cleavage products, in both types of particles. Based on these results we propose that the ts 1 gene codes for or regulates an endoprotease which is responsible for the completion of the last step in virus maturation, that is, the conversion of "young virions" into mature infectious virions by a series of maturation cleavages.  相似文献   

17.
The mRNAs from early region 1B of adenovirus type 2 have been studied by Northern blot, S1 nuclease, and cDNA analysis. Two novel mRNAs, designated 14S and 14.5S, have been observed in addition to the previously identified 9S, 13S, and 22S mRNAs. They are 1.26 and 1.31 kilobases long and differ from the 13S and 22S mRNAs in being composed of three exons instead of two. Their two terminal exons are the same as those present in the 13S mRNA, whereas the middle exon is unique to each of the two novel mRNA species. The structures of the 14S and 14.5S mRNAs allow the prediction of their coding capacities: both mRNA species, like the 22S and 13S mRNAs, contain an uninterrupted translational reading frame encoding a 21,000-molecular-weight (21K) polypeptide. The 14S mRNA can, in addition, encode a 16.5K polypeptide which shares N-terminal and C-terminal sequences with the 55K polypeptide, known to be encoded by the 22S mRNA. The 14.5S mRNA species encodes a hypothetical 9.2K polypeptide which has the same N terminus as the 55K polypeptide but a unique C terminus. The two mRNAs differ in their kinetics of appearance; the 14.5S mRNA is preferentially expressed late after infection in contrast to the 14S mRNA, which is present in approximately equal amounts early and late after infection. Taken together with previously published information the results suggest that early region 1B of adenovirus type 2 encodes five proteins in addition to virion polypeptide IX. These have predicted molecular weights of 55,000, 21,000, 16,500, 9,200, and 8,100.  相似文献   

18.
DNA sequences from the adenovirus 2 genome   总被引:7,自引:0,他引:7  
The sequence of 5,839 nucleotides from the adenovirus 2 genome has been determined and includes the regions between coordinates 32-44% and 66-71%. These regions contain the coding sequences for the 52,55K polypeptide, polypeptide IIIa, penton base, and the N terminus of the 100K polypeptide. Several additional unidentified open reading frames are present, including examples which overlap identified reading frames on the complementary strand and on the same strand. In conjunction with previously published sequences and those described in the accompanying papers (Akusj?rvi, G., Alestr?m, P., Pettersson, M., Lager, M., J?urnvall, H., and Pettersson, U. (1984) J. Biol. Chem. 259, 13976-13979; Alestr?m, P., Akusj?rvi, G., Lager, M., Yeh-kai, L., and Pettersson, U. (1984) J. Biol. Chem. 259, 13980-13985) a complete sequence of 35,937 nucleotide pairs can now be reconstructed for the adenovirus 2 genome.  相似文献   

19.
In vitro cleavage specificity of the adenovirus type 2 proteinase   总被引:10,自引:0,他引:10  
Two in vitro proteinase assay systems were developed and used to study the peptide bond specificity and substrate specificity of the adenovirus endoproteinase. Five adenovirus precursor proteins (PVI, PVII, PVIII, 87K, 11K), all found in the virion of the ts1 mutant grown at the nonpermissive temperature, were digested by the proteinase. All, except 11K, were cleaved to their mature counterparts. Some of the proteins, particularly the 87K terminal protein, were processed via cleavage intermediates similar to those found in vivo. The data suggest that the proteinase specifically hydrolyses Gly-Ala bonds. The high specificity for the natural substrates and the failure to cleave foreign proteins suggest that cleavage activity is determined not only by primary sequence but also by other physical features of the substrate. Enzyme activity was inhibited by diisopropylfluorophosphate, showing that it is a serine proteinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号