首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of [14C]cholesterol transfer from small unilamellar vesicles containing cholesterol dissolved in bilayers of different phospholipids have been determined to examine the influence of phospholipid-cholesterol interactions on the rate of cholesterol desorption from the lipid-water interface. The phospholipids included unsaturated phosphatidylcholines (PC's) (egg PC, dioleoyl-PC, and soybean PC), saturated PC (dimyristoyl-PC and dipalmitoyl-PC), and sphingomyelins (SM's) (egg SM, bovine brain SM, and N-palmitoyl-SM). At 37 degrees C, for vesicles containing 10 mol% cholesterol, the half-times for exchange are about 1, 13, and 80 h, respectively, for unsaturated PC, saturated PC, and SM. In order to probe how differences in molecular packing in the bilayers cause the rate constants for cholesterol desorption to be in the order unsaturated PC greater than saturated PC greater than SM, nuclear magnetic resonance (NMR) and monolayer methods were used to evaluate the cholesterol physical state and interactions with phospholipid. The NMR relaxation parameters for [4-13C]cholesterol reveal no differences in molecular dynamics in the above bilayers. Surface pressure (pi)-molecular area isotherms for mixed monolayers of cholesterol and the above phospholipids reveal that SM lateral packing density is greater than that of the PC with the same acyl chain saturation and length (e.g., at pi = 5 mN/m, where both monolayers are in the same physical state, dipalmitoyl-PC and palmitoyl-SM occupy 87 and 81 A2/molecule, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Both phosphatidylcholine (PC) and sphingomyelin (SM) are the major phospholipids in the outer leaflet of the hepatocyte canalicular membrane. Yet, the phospholipids secreted into bile consist principally (>95%) of PC. In order to understand the physical;-chemical basis for preferential biliary PC secretion, we compared interactions with bile salts (taurocholate) and cholesterol of egg yolk (EY)SM (mainly 16:0 acyl chains, similar to trace SM in bile), buttermilk (BM)SM (mainly saturated long (>20 C-atoms) acyl chains, similar to canalicular membrane SM) and egg yolk (EY)PC (mainly unsaturated acyl chains at sn-2 position, similar to bile PC). Main gel to liquid-crystalline transition temperatures were 33. 6 degrees C for BMSM and 36.6 degrees C for EYSM. There were no significant effects of varying phospholipid species on micellar sizes or intermixed-micellar/vesicular bile salt concentrations in taurocholate-phospholipid mixtures (3 g/dL, 37 degrees C, PL/BS + PL = 0.2 or 0.4). Various phases were separated from model systems containing both EYPC and (EY or BM)SM, taurocholate, and variable amounts of cholesterol, by ultracentrifugation with ultrafiltration and dialysis of the supernatant. At increasing cholesterol content, there was preferential distribution of lipids and enrichment with SM containing long saturated acyl chains in the detergent-insoluble pelletable fraction consisting of aggregated vesicles. In contrast, both micelles and small unilamellar vesicles in the supernatant were progressively enriched in PC. Although SM containing vesicles without cholesterol were very sensitive to micellar solubilization upon taurocholate addition, incorporation of the sterol rendered SM-containing vesicles highly resistant against the detergent effects of the bile salt. These findings may have important implications for canalicular bile formation.  相似文献   

3.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine greater than C18: I phosphatidylcholine greater than C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0 degrees C and 4 degrees C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23 degrees C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

4.
By use of carboxyfluorescein-loaded multilamellar liposomes prepared from synthetic phosphatidylcholine (PC) or sphingomyelin and cholesterol in a molar ratio of 1:1, we studied whether or not fatty acyl domain of the phospholipids affects the membrane-damaging action (or channel formation) of Staphylococcus aureus alpha-toxin on the phospholipid-cholesterol membranes. Our data indicated: (1) that toxin-induced carboxyfluorescein-leakage from the liposomes composed of saturated fatty acyl residue-carrying PC and cholesterol was decreased with increasing chain length of the acyl residues between 12 and 18 carbon atoms, although toxin-binding to the liposomes was not significantly affected by the length of fatty acyl residue; (2) that unsaturated fatty acyl residue in PC or sphingomyelin molecule conferred higher sensitivity to alpha-toxin on the phospholipid-cholesterol liposomes, compared with saturated fatty acyl residues; and (3) that hexamerization of alpha-toxin, estimated by SDS-polyacrylamide gel electrophoresis, occurred more efficiently on the liposomes composed of PC with shorter fatty acyl chain or unsaturated fatty acyl chain. Thus, hydrophobic domain of the phospholipids influences membrane-channel formation of alpha-toxin in the phospholipid-cholesterol membrane, perhaps by modulating packing of phospholipid, cholesterol and the toxin in membrane.  相似文献   

5.
The phospholipase A1 activity of lipoprotein lipase (LpL) was determined with monomolecular phospholipid films. Rates of phospholipid hydrolysis were dependent on apolipoprotein C-II (the activator protein for LpL) phospholipid fatty acyl composition, and lipid-packing density. In sphingomyelin: cholesterol (2:1, molar) monolayers containing 5 mol % disaturated phosphatidylcholines (PC) and at a surface pressure of 22 mNm-1, rates of LpL hydrolysis of diC14:0PC, diC16:0PC, and diC18:0PC were 74, 207, and 65 nmol h-1 mg LpL-1, respectively. At 22 mNm-1, phospholipids containing unsaturated fatty acyl chains were hydrolyzed at rates 5-10 times greater than saturated lipids. At higher lipid packing densities, the difference in hydrolysis rates between saturated and unsaturated lipids was less apparent. Comparison of molecular areas indicate no simple dependency between the rate of LpL catalysis and phospholipid fatty acyl chain length and saturation/unsaturation.  相似文献   

6.
The capture volumes (internal aqueous spaces) of liposomes prepared from a series of saturated phosphatidylcholines (PC) and saturated phosphatidylethanolamines (PE) had previously been found to be a function of lipid structure. PE vesicles have larger internal aqueous spaces than PC vesicles and for lipids with the same head group, capture volume increases with lengthening of the fatty acyl chains. Capture volume is determined by vesicle size, number of lamellae, and interlamellar distance. In this study, liposomes were formed from a saturated PC or PE and their morphology studied in the gel state using the technique of negative staining transmission electron microscopy. The measured interlamellar distances were quite similar among these various lipids while the number of lamellae was found to decrease as the fatty acyl chain length increased. In general PEs form fewer lamellae than PCs and in particular mono- and di-methylated dipalmitoyl-PE form only unilamellar vesicles. The number of lamellae then appears to bear a relationship to the size of the capture volume in that liposomes with largercapture volumes have fewer lamellae.  相似文献   

7.
Liposomes have been prepared from dipalmitoyllecithin, dimyristoyllecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin.Permeability properties of liposomes thus prepared were studied toward glucose. The glucose permeability of liposomes with saturated lecithins (dipalmitoyllecithin and dimyristoyllecithin) and sphingomyelin appears to be more strongly temperature dependent than that of liposomes with lecithin containing unsaturated fatty acyl chains (egg and rat liver lecithins). The permeability of glucose through vesicles of dipalmitoyllecithin or dimyristoyllecithin was enhanced drastically at their transition temperatures, while the incorporation of about 25 mole% of egg lecithin into liposomes of saturated lecithins suppressed the enhanced permeation rates of glucose above the transition temperatures.The incorporation of small amounts of cholesterol enhanced the temperature-dependent permeability of glucose through the bilayer of saturated lecithins or sphingomyelin. This tendency was best shown in the case of dipalmitoyl-lecithin, in which 20 mole% of cholesterol had the most stimulating effect on the temperature-dependent permeability. The introduction of more than 33 mole% of cholesterol showed, however, reduced effects on the temperature-dependent permeability through liposomes with saturated lecithins or sphingomyelin. It was also shown that cholesterol had a much larger effect on the regulation of the temperature-dependent permeability of liposomes prepared with saturated lecithins or sphingomyelin than on that of liposomes prepared with phospholipids containing unsaturated fatty acids.  相似文献   

8.
The interaction of cholesterol with conformationally restricted analogs of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in the liquid-crystalline phase has been studied in vesicles. These analogs contain one of three cyclopentane triols in place of the glycerol moiety found in natural phospholipids and make possible an analysis of whether a limitation of the conformational mobility in the glycerol backbone region affects the interaction with cholesterol. When cholesterol was incorporated into vesicles from cyclopentanoid phospholipids in which the acyl group vicinal to the head group is trans, the first-order rate constant for Cl- efflux is decreased similarly to that in vesicles from 'natural' DPPC or DPPG (about 50%). However, when the head group is in the unnatural 2 position, cholesterol has a much smaller effect on the rate of Cl- efflux (a decrease of about 20%). Cholesterol decreased the rate constants for valinomycin-mediated 86Rb+ efflux from vesicles of the cyclopentanoid PC analogs and of DPPC to a similar extent. The half-time values for spontaneous intervesicle cholesterol exchange were not markedly different using vesicles prepared with the natural glycerophospholipids and with the cyclopentano-phospholipids, suggesting that the geometrical orientation of the acyl chains or the head group has little influence on cholesterol desorption from the lipid/water interface.  相似文献   

9.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine > C18 : 1 phosphatidylcholine > C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0°C and 4°C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23°C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

10.
Lipid composition of Mycoplasma orale was examined and compared with that of horse serum added to the growth medium. Ratios of cholesterol/cholesterol ester and sphingomyelin/phosphatidylcholine were much higher in M. orale than in the horse serum, indicating the organism incorporates selectively cholesterol and sphingomyelin. A distinct difference between the lipids from the two sources was that in phospholipids of M. orale almost all (greater than 95%) of the fatty acyl residues were saturated whereas nearly half of the residues were unsaturated in horse serum phospholipids. Approximately one third of M. orale phospholipids was phosphatidylglycerol, which was synthesized by the organism as was demonstrated by 32P-labeling experiment. Its acyl residues consisted mainly of C16:0 and were efficiently labeled with 14C-palmitate but not with 14C-acetate. These results clearly indicate the de novo synthesis of phosphatidylglycerol by M. orale is through acylation with exogenous saturated fatty acids. On the other hand, all the phosphatidylcholine and sphingomyelin of M. orale were derived from the medium. The 14C-labeling experiment demonstrates that no fatty acid synthesis takes place nor exogenous fatty acid can be incorporated so efficiently as phosphatidylglycerol, suggesting that extremely high proportion of saturated fatty acyl residues in these phospholipids is the consequence of saturation directed to the acyl chains of the incorporated phospholipids.  相似文献   

11.
C C Kan  Z S Ruan  R Bittman 《Biochemistry》1991,30(31):7759-7766
Cholesterol undergoes exchange between membranes containing sphingomyelin at a much slower rate than between membranes lacking sphingomyelin. To investigate the role of the hydroxy group at the 3-position of sphingomyelin in the interaction between sphingomyelin and cholesterol, we have measured the rates of [4-14C]cholesterol exchange between unilamellar vesicles prepared with N-stearoylsphingomyelin or with synthetic analogues in which the hydroxy group is replaced with an O-alkyl group or with hydrogen. Vesicles prepared from 3-deoxy- and 3-O-methyl-N-stearoylsphingomyelin had the same rate of [14C]-cholesterol desorption. The half-times for exchange from vesicles prepared with 3-O-methyl- and 3-deoxy-N-stearoylsphingomyelins and 10 mol % of cholesterol were only slightly faster (a factor of only 1.5) than that found from vesicles prepared from N-stearoylsphingomyelin and 10 mol % cholesterol. The rate of cholesterol desorption from vesicles could be accelerated by preparing vesicles from bulky 3-O-alkyl analogues of sphingomyelin. Vesicles containing 3-O-ethyl-N-stearoylsphingomyelin and 3-O-tetrahydropyranyl egg sphingomyelin gave rate enhancements of approximately 14 and 35, compared with the rates observed in vesicles made from N-stearoyl- and egg sphingomyelin, respectively. These data indicate that insertion of sterically bulky groups at the 3-position of sphingomyelin (such as ethoxy and tetrahydropyranyloxy) in place of hydroxy interferes markedly with the molecular packing of cholesterol and sphingomyelin in bilayer membranes; however, the hydroxy group of sphingomyelin is not critical for the strong interaction of cholesterol with sphingomyelin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells.  相似文献   

13.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3883-3888
The process of transfer of vitamin A alcohol (retinol) between unilamellar vesicles of phosphatidylcholine was studied. The transfer was found to proceed spontaneously by hydration from the bilayer and diffusion through the aqueous phase. The rate-limiting step for transfer was the dissociation from the bilayer, a step that was characterized in bilayers of egg phosphatidylcholine (PC) by a rate constant koff = 0.64 s-1. The rate constant for association of retinol with bilayers of egg PC was also determined: kon = 2.9 x 10(6) s-1. The relative avidities for retinol of vesicles comprised of PC lipids with the various fatty acyl chains were measured. It was found that the binding affinity was determined by the composition of the lipids, such that PC with symmetric acyl chains had a lower affinity for retinol vs those with mixed chains. To clarify the mechanism underlying this observation, the rates of dissociation and association of retinol bound to vesicles of dioleoyl-PC were determined. The rate of association of retinol with bilayers strongly depended on the composition of the fatty acyl chains of the lipids. The rate of dissociation of retinol from the bilayers of PC was found to be independent of that composition. The implications of the observations for the interactions of hydrophobic ligands with lipid bilayers are discussed.  相似文献   

14.
Carbon-13 NMR longitudinal relaxation times for unilamellar vesicles of egg phosphatidyl-choline (PC) in aqueous dispersion have been measured following the incorporation of spin labelled cholesteryl palmitate. The spin label induced relaxation rates. 1/T1.5L, for fatty acyl chain carbons show that the C5 segment of the cholesteryl ester acyl chain is located near the C1 and C2 segments of the phospholipid acyl chains. A greater spin label induced enhancement of relaxation rate was observed for the inner vesicle layer than for the outer, and is attributed to a higher ester incorporation and/or tighter lipid packing in the inner layer.  相似文献   

15.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

16.
Mono- and dimethylated derivatives constitute important intermediates in the conversion of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in eucaryote membranes. 1H-NMR techniques were utilized to examine the conformation of the region of the fatty acyl chains that is close to the polar group in the series of alpha-phospholipids: PE, N-methyl-PE, N,N-dimethyl-PE, and PC. The same series of polar groups, but on phospholipid containing sn-1 and/or sn-3 fatty acyl chains (beta-phospholipids) were also examined. All of the phospholipids were in the form of small sonicated vesicles which are widely utilized as membrane models. The alpha-methylene group of the sn-1 and sn-2 fatty acyl chains of the alpha-phospholipids give rise to separate signals due to the non-equivalency of these chains with respect to the glycerol phosphate backbone on all alpha-phospholipids tested. Additionally, differences in the environment of the PC molecules as well as N-methyl-PE, and N,N-dimethyl-PE, but not PE itself on the inside and outside of the vesicles are reflected in the chemical shift of the alpha-methylene protons. On the other hand, all of the beta-phospholipids (including beta-PE) were found to reflect the inside/outside packing differences in their alpha-methylene groups. The bilayer packing does not induce any nonequivalence in the chemically equivalent acyl chains. In mixed micelles with detergents, beta-phospholipids showed one alpha-CH2 signal for all phospholipids. These results are consistent with a common conformational arrangement for the fatty acyl chains in all alpha-phospholipids that have been investigated no matter what aggregated form. The conformational arrangement in the beta-phospholipids is different, but again is similar for all of the compounds tested in various aggregated forms.  相似文献   

17.
Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains.  相似文献   

18.
Q Yang  Y Guo  L Li    S W Hui 《Biophysical journal》1997,73(1):277-282
The effect of lipid headgroup and curvature-related acyl packing stress on PEG-induced phospholipid vesicle aggregation and fusion were studied by measuring vesicle and aggregate sizes using the quasi-elastic light scattering and fluorescence energy transfer techniques. The effect of the lipid headgroup was monitored by varying the relative phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents in the vesicles, and the influence of hydrocarbon chain packing stress was controlled either by the relative amount of PE and PC content in the vesicles, or by the degree of unsaturation of the acyl chains of a series of PEs, e.g., dilinoleoylphosphatidylethanolamine (dilin-PE), lysophosphatidylethanolamine (lyso-PE), and transacylated egg phosphatidylethanolamine (TPE). The PEG threshold for aggregation depends only weakly on the headgroup composition of vesicles. However, in addition to the lipid headgroup, the curvature stress of the monolayer that forms the vesicle walls plays a very important role in fusion. Highly stressed vesicles, i.e., vesicles containing PE with highly unsaturated chains, need less PEG to induce fusion. This finding applies to the fusion of both small unilamellar vesicles and large unilamellar vesicles. The effect of electrostatic charge on vesicle aggregation and fusion were studied by changing the pH of the vesicle suspension media. At pH 9, when PE headgroups are weakly charged, increasing electrostatic repulsion between headgroups on the same bilayer surface reduces curvature stress, whereas increasing electrostatic repulsion between apposing bilayer headgroups hinders intervesicle approach, both of which inhibit aggregation and fusion, as expected.  相似文献   

19.
Complement components C5b-6 and C7 assemble to form C5b-7, which then interacts with membranes and commits the membrane attack complex to a target site. This protein-membrane association event was investigated to determine possible structural features that could contribute to a selective membrane attack. This system may also suggest general properties of protein-membrane insertion events. Initial binding of C5b-6 to membranes could potentially determine the site of assembly. However, binding of C5b-6 to membranes required phosphatidylglycerol or phosphatidic acid produced from egg phosphatidylcholine while binding of C5b-6 to phosphatidylcholine, phosphatidylserine, or phosphatidylinositol was undetectable. Binding to phosphatidic acid was irreversible, and the bound C5b-6 could no longer interact with C7. In contrast, C5b-7 interacted with all phospholipids tested. The rate-limiting process was the interaction of C5b-6 and C7, which displayed bimolecular properties and an activation energy of 37 kcal/mol. The C5b-7 complex showed 20-fold selectivity for small unilamellar phospholipid vesicles over large unilamellar vesicles. Vesicles carrying high negative charge densities were selected over neutral vesicles by a factor of about 5. Vesicles formed from phospholipids with short, saturated hydrocarbon side chains (dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine) were about 5-fold less effective than those formed from phospholipids with natural fatty acid distributions. The gel vs. fluid state had little influence on C5b-7 insertion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
When egg yolk diacylglycerophosphocholine (PC) liposomes were incubated with human oxyhemoglobin, peroxidation of liposomal lipid was induced, as monitored by an increase of thiobarbituric acid (TBA)-reactive substances, an increase of lipid hydroperoxides and the generation of chemiluminescence in the presence of luminol. During the reaction, cytotoxic substance(s), which induced shedding of acetylcholinesterase-enriched vesicles from human erythrocytes, were produced. Formation of TBA-reactive substances and lipid hydroperoxides preceded generation of chemiluminescence, conversion of oxyhemoglobin to methemoglobin and production of the toxic substances. Either superoxide dismutase or catalase could suppress generation of chemiluminescence, but not other events. Methemoglobin or ferrous ion plus ascorbate could induce peroxidation of the liposomes without production of the cytotoxic substance(s). Synthetic PCs containing both saturated and polyunsaturated fatty acyl chains caused the production of cytotoxic products which induced shedding of vesicles from erythrocytes, whereas those containing only polyunsaturated fatty acyl chains did not, suggesting that the molecular species which can produce cytotoxic products may be phospholipids containing both saturated and polyunsaturated fatty acids. The mechanism of oxyhemoglobin-induced peroxidation of lipids will be also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号