首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide variety of cytokines have been demonstrated to affect B-cell function. However, it is unclear which of these mediators actually exert direct effects on the B cells themselves. In the present study, the direct role of interleukin (IL) 1, IL-2, Interferon-gamma, or Interferon-alpha in human B-cell activation, proliferation, or differentiation was examined and compared with the effects of a B-cell growth factor (BCGF) or a B-cell differentiation factor (BCDF). Highly purified human B lymphocytes were separated according to size into two nonoverlapping populations. The fraction of small B cells was incubated with IL-1, IL-2, Interferon-gamma, Interferon-alpha, BCGF, or BCDF, and cell size changes, RNA synthesis, DNA synthesis, or supernatant immunoglobulin (Ig) production were measured. Neither IL-1, IL-2, Interferon-alpha, Interferon-gamma, nor the BCGF induced substantial cell size changes, RNA synthesis, DNA synthesis, or Ig production by the small fraction of B lymphocytes; however, the BCDF could directly activate a proportion of resting B lymphocytes to secrete Ig. The fraction of large B cells was also incubated with these cytokines. While neither IL-1, Interferon-alpha, nor Interferon-gamma enhanced DNA synthesis or Ig production by the fraction of large B lymphocytes, DNA synthesis was augmented 23-fold by BCGF and IgG production was increased 7-fold by BCDF. Additionally, IL-2 slightly enhanced both proliferation and differentiation of large B cells but substantially less so than BCGF and BCDF; DNA synthesis was increased 4-fold, while Ig production in the presence of IL-2 was increased by approximately 50%. Thus, the most important lymphokines modulating the function of these two fractions of tonsillar lymphocytes were a BCGF and a BCDF.  相似文献   

2.
3.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

4.
Cytokines are important modulators of lymphocytes, and both interleukin-21 (IL-21) and IL-6 have proposed roles in T follicular helper (Tfh) differentiation, and directly act on B cells. Here we investigated the absence of IL-6 alone, IL-21 alone, or the combined lack of IL-6 and IL-21 on Tfh differentiation and the development of B cell immunity in vivo. C57BL/6 or IL-21−/− mice were treated with a neutralizing monoclonal antibody against IL-6 throughout the course of an acute viral infection (lymphocytic choriomeningitis virus, LCMV). The combined absence of IL-6 and IL-21 resulted in reduced Tfh differentiation and reduced Bcl6 protein expression. In addition, we observed that these cytokines had a large impact on antigen-specific B cell responses. IL-6 and IL-21 collaborate in the acute T-dependent antiviral antibody response (90% loss of circulating antiviral IgG in the absence of both cytokines). In contrast, we observed reduced germinal center formation only in the absence of IL-21. Absence of IL-6 had no impact on germinal centers, and combined absence of both IL-21 and IL-6 revealed no synergistic effect on germinal center B cell development. Studying CD4 T cells in vitro, we found that high IL-21 production was not associated with high Bcl6 or CXCR5 expression. TCR stimulation of purified naïve CD4 T cells in the presence of IL-6 also did not result in Tfh differentiation, as determined by Bcl6 or CXCR5 protein expression. Cumulatively, our data indicates that optimal Tfh formation requires IL-21 and IL-6, and that cytokines alone are insufficient to drive Tfh differentiation.  相似文献   

5.
6.
We have examined the functional and metabolic properties of immunoglobulin (Ig)-secreting cells in adult (rib) bone marrow, the tissue which provides the major proportion of serum Igs. In the absence of polyclonal activators, high rate Ig production (1-2 micrograms/day/10(6) marrow mononuclear cells) was sustained from the beginning of culture throughout 2 weeks and then declined. Ten percent of the Ig secreted was of the IgM isotype and IgG/A made up the remainder at equal proportions. Infection of marrow cells with Epstein-Barr virus (EBV) induced the production of large amounts of IgM, but virtually all IgG/A-committed cells were refractory to stimulation with EBV. Both EBV-induced and the "spontaneous" Ig production was inhibited by cycloheximide, but only EBV-induced IgM production was blocked by hydroxyurea and gamma-irradiation. The polyclonal activators PHA and PWM induce suppressor-T-cell activity in marrow cultures. This suppressor function involves nonproliferating cells which acquire suppressive activity 3-4 days after mitogenic activation. Prednisolone and cyclosporine A modulate Ig production in cultures of peripheral lymphocytes but had no effect on Ig secretion in marrow cell cultures. This observation was reminiscent of the absent or at best marginal short-term effects on in vivo serum Ig levels which is typical for these drugs. Our observations suggest that the marrow Ig-producing B-lymphoid cell compartment shows major differences to other tissue sites with respect to properties of the Ig-secreting cells the immunoregulatory activities able to control their function, and the response of these cells to clinically important drugs.  相似文献   

7.
Differentiation of B cells into Ig-secreting cells (ISC) is critical for the generation of protective humoral immune responses. Because of the important role played by secreted Ig in host protection against infection, it is necessary to identify molecules that control B cell differentiation. Recently, IL-21 was reported to generate ISC from activated human B cells. In this study, we examined the effects of IL-21 on the differentiation of all human mature B cell subsets--neonatal, transitional, naive, germinal center, IgM-memory, and isotype-switched memory cells--into ISC and compared its efficacy to that of IL-10, a well-known mediator of human B cell differentiation. IL-21 rapidly induced the generation of ISC and the secretion of vast quantities IgM, IgG and IgA from all of these B cell subsets. Its effect exceeded that of IL-10 by up to 100-fold, highlighting the potency of IL-21 as a B cell differentiation factor. Strikingly, IL-4 suppressed the stimulatory effects of IL-21 on naive B cells by reducing the expression of B-lymphocyte induced maturation protein-1 (Blimp-1). In contrast, memory B cells were resistant to the inhibitory effects of IL-4. Finally, the ability of human tonsillar CD4+CXCR5+CCR7- T follicular helper (TFH) cells, known to be a rich source of IL-21, to induce the differentiation of autologous B cells into ISC was mediated by the production of IL-21. These findings suggest that IL-21 produced by TFH cells during the primary as well as the subsequent responses to T cell-dependent Ag makes a major contribution to eliciting and maintaining long-lived humoral immunity.  相似文献   

8.
We have previously shown that basophils support humoral memory immune responses by increasing B cell proliferation and Ig production as well as inducing a Th2 and B helper phenotype in T cells. Based on the high frequency of basophils in spleen and bone marrow, in this study we investigated whether basophils also support plasma cell survival and Ig production. In the absence of basophils, plasma cells of naive or immunized mice rapidly undergo apoptosis in vitro and produce only low amounts of Igs. In contrast, in the presence of basophils and even more in the presence of activated basophils, the survival of plasma cells is markedly increased and continuous production of Igs enabled. This effect is partially dependent on IL-4 and IL-6 released from basophils. Similar results were obtained when total bone marrow cells or bone marrow cells depleted of basophils were cultured in the presence or absence of substances activating basophils. When basophils were depleted in vivo 6 mo after immunization with an Ag, specific Ig production in subsequent bone marrow cultures was significantly reduced. In addition, depletion of basophils for 18 d in naive mice significantly reduced the number of plasma cells in the spleen. These data indicate that basophils are important for survival of plasma cells in vitro and in vivo.  相似文献   

9.
Immunomodulatory role of IL-4 on the secretion of Ig by human B cells   总被引:9,自引:0,他引:9  
The effect of IL-4 on the production of Ig by human B cells was examined. Highly purified B cells were stimulated with Staphylococcus aureus (SA) and IL-4 alone or in combination with various other cytokines and the supernatants assayed for Ig by isotype-specific ELISA. IL-4 (10 to 100 U/ml) did not support Ig secretion by SA-stimulated blood, spleen, or lymph node B cells, whereas IL-2 supported the production of all isotypes including IgE. Moreover, IL-4 suppressed the production of all isotypes of Ig by B cells stimulated with SA and IL-2 including IgG1, IgG2, and IgE. IL-4-mediated suppression was partially reversed by IFN-gamma or -alpha and low m.w. B cell growth factor. TNF-alpha and IL-6 did not reverse the IL-4-induced suppression of Ig production. The inhibitory action of IL-4 on Ig production appeared to depend on the polyclonal activator used to stimulate the B cells. Thus, Ig secretion by B cells activated by LPS and supported by IL-2 was not inhibited by IL-4. Whereas IL-4 alone supported minimal Ig production by LPS-activated B cells, it augmented production of all Ig isotypes in cultures stimulated with LPS and supported by IL-2. IFN-gamma further enhanced production of Ig in these cultures. When the effect of IL-4 on the responsiveness of B cells preactivated with SA and IL-2 was examined, it was found not to inhibit but rather to promote Ig production modestly. A direct effect of IL-4 on the terminal differentiation of B cells was demonstrated using B lymphoblastoid cell lines. IL-4 was able to enhance the Ig secreted by an IgA-secreting hybridoma, 219 and by SKW6-CL-4, an IL-6-responsive IgM-secreting EBV transformed B cell line. These results indicate that IL-4 exerts a number of immunoregulatory actions on human B cell differentiation. It interferes with the activation of B cells by SA and IL-2, but promotes the differentiation of preactivated B cells, B cell lines, and B cells activated by LPS without apparent isotype specificity.  相似文献   

10.
11.
A study was made of the regulatory effect of human bone marrow cells in two experimental systems: lymphocyte proliferation in response to PHA, and spontaneous and PHA-induced production of macrophage migration inhibition factor (MIF) by peripheral blood lymphocytes. It was shown that bone marrow cells inhibit the proliferative activity of stimulated peripheral blood lymphocytes and induced MIF production. The effect of bone marrow cells on spontaneous MIF production was found to be inconclusive.  相似文献   

12.
Our experiments have addressed regulation of B lymphocyte formation by bone marrow stromal cells. Stromal cells appear to produce a regulatory factor that acts at the pre-B cell stage to induce the expression of Ig L chains and surface Ig. Bone marrow stromal cell conditioned medium was found to contain this factor and the active component was partially purified by HPLC. This stromal cell-derived factor had a m.w. between 16,000 and 20,000, was specifically neutralized by anti-IL-4 mAb, 11B11, and enhanced the proliferation of anti-mu-stimulated B cells. We also found that rIL-4 induced B cell formation in culture. In our studies, IL-1 had no direct effect on pre-B cell maturation, however, IL-1 was found to stimulate the production of IL-4 by both heterogeneous bone marrow stromal cells and a cloned stromal cell line, SCL-160. These effects of IL-1 on factor production by stromal cells were duplicated by the addition of bone marrow-derived macrophages to SCL-160 cells. We conclude that stromal cell-derived IL-4 is a physiologic stimulator for B cell generation. In addition, macrophages appear to play a role in B cell formation by regulating the production of IL-4 by stromal cells via the secretion of IL-1.  相似文献   

13.
14.
Human bone marrow (BM) B cells capable of spontaneous and high rate Ig secretion for 14 days in vitro have been described previously. We have shown recently that Ig secretion by these BM cells depends on stromal adherent BM cell-derived factors identified as IL-6 and fibronectin. Our report shows that the endogenous generation of IL-1 beta and TNF-alpha in serum-containing cultures of BM mononuclear cells (BMMC) is also involved in the control of Ig-secreting cells, because their blockade with specific antibodies markedly reduced Ig production. Further experiments revealed that IL-1 beta and TNF-alpha acted by regulating IL-6 production, as can be deduced from the following findings: 1) the inhibition of Ig secretion caused by either anti-IL-1 beta or anti-TNF-alpha antibodies could be reversed by exogenous IL-6; 2) the addition of either of these antibodies inhibited endogenous IL-6 production in BMMC cultures; 3) IL-1 beta plus TNF-alpha, but neither one alone, restored complete IL-6 and Ig production by BMMC in serum-free cultures. Moreover, adherent, but not nonadherent, BM cells were responsible for endogenous IL-1 beta and TNF-alpha secretion. Finally, IL-1 beta plus TNF-alpha induced the production of IL-6, but not of Ig, by adherent BM cells. Neither IL-6 nor Ig production was induced by adding this cytokine combination to nonadherent BM cell cultures, despite the fact that this fraction contained all the Ig-secreting cells. However, the addition of IL-6 restored Ig secretion in this cell fraction. These results suggest that IL-1 beta and TNF-alpha produced by adherent BM cells synergistically induce early IL-6 generation, which, in turn, drives BM B cell producers into the high rate Ig-secreting state.  相似文献   

15.
We have investigated the effect of growth factors, inflammatory and anti-inflammatory cytokines on the macrophage colony-stimulating factor (M-CSF) secretion by cultured human bone marrow stromal cells. Their production of M-CSF cultured in serum-free medium is enhanced in a time-dependent manner in response to tumour necrosis factor (TNF-)alpha and interleukin (IL-)4 but not to IL-1, IL-3, IL-6, IL-7, IL-10, SCF, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, bFGF and transforming growth factor (TGF-)beta. The co-addition of IL-4 and TNF-alpha has a greater than additive effect on the secretion of M-CSF suggesting that they act synergistically. The anti-inflammatory molecules IL-10 and TGF-beta have no effect on the TNF-alpha-induced M-CSF synthesis by marrow stromal cells. In conclusion TNF-alpha and IL-4 are potent stimulators of the M-CSF synthesis by human bone marrow stromal cells, a result of importance regarding the role of M-CSF in the proliferation/differentiation of mononuclear-phagocytic cells and the role of marrow stromal cells as regulators of marrow haematopoiesis.  相似文献   

16.
The beige/nude/xid/human (bnx/hu) model of human hematopoiesis provides a unique opportunity to study extrathymic human T lymphocyte development in an in vivo system. Purified human hematopoietic stem cells develop into mature T lymphocytes and immature progenitors in the bone marrow of athymic bnx mice. The human T cells are all TCR alpha beta(+) and display a restricted TCRV beta repertoire. In the current studies, we examined the effects of systemic human IL-7 (huIL-7) administration on the phenotype and the activation status of the bnx/hu T cells. In the majority of the mice that did not have huIL-7 administration, a higher frequency of human CD3(+)/CD8(+) than CD3(+)/CD4(+) T cells developed in the bone marrow. This phenomenon is also frequently observed in human bone marrow transplant recipients. Extremely low levels of IL-2 were expressed by human CD3(+) cells isolated from these mice, in response to PMA plus ionomycin and to CD3 and CD28 cross-linking. IL-4 was not expressed by cells exposed to either stimulus, demonstrating a profound inability of the bnx/hu T cells to produce this cytokine. Systemic production of huIL-7 from engineered stromal cells transplanted into the mice increased the human CD4 to CD8 ratios, and increased the ratio of memory to naive CD4(+) and CD8(+) T cells. The human CD3(+) cells recovered from mice that had systemic huIL-7 and equivalent numbers of CD3(+)/CD4(+) and CD3(+)/CD8(+) cells in the marrow were still unable to produce IL-4 in response to any condition tested, but were capable of normal levels of IL-2 production following stimulation.  相似文献   

17.
18.
We have purified subpopulations of B lineage cells from human adult (rib) bone marrow by cell sorting and panning. Limiting dilution analysis was then used for a clonal analysis of cells able to secrete IgG, IgA, or IgM spontaneously or after infection with EBV. Nonproliferating, high rate IgG or IgA producers occurred at frequencies of about one per 1000 marrow mononuclear cells. Their frequency and Ig production was unaffected by EBV, and they appeared not to express EBNA after exposure to EBV. These cells were Ia+, B1+, and over 85% expressed sIg of the IgM/D (up to 75%) and/or IgG/A isotypes (40 to 60%). B cells committed to the secretion of IgM represent 2 to 10% of marrow B lymphocytes. They were found to be Ia+/B1+/B2+/CALLA- and C3b receptor (CR3)-cells, and most (greater than 90%) required infection with EBV and proliferation to develop into IgM-producing lymphocytes. Thirty to 40% of these cells did not express Ig (H or L chain) on their surface, and therefore resembled pre-B cells at the beginning of the 4- to 5-wk culture period. Proliferating pre-B cells from adult human marrow have been described, but their conversion into IgM-producing cells has not been formally demonstrated. Although EBV induces IgM production, the expression of EBNA, and several rounds of cell division in these cells, the induction of stable (greater than 5 wk) growth transformation represents a rare event in these pre-B cells: in several thousand limiting dilution wells, not a single culture of sIg-cells showed stable growth transformation. The dichotomy between EBV-induced high-rate IgM responses and absent growth transformation discriminates activation and transformation as distinct aspects of EBV-induced B cell "responses", and suggests that cellular properties play critical roles for viral transformation. We propose a model in which cellular target genes for transforming sequences in the EBV genome are transiently expressed during B cell differentiation.  相似文献   

19.
H G Mergenthaler  P D?rmer 《Blut》1990,60(4):228-232
The production of granulocyte-macrophage colony-forming cells (GM-CFC) and the proliferation period in human long-term bone marrow cultures are inferior to murine cultures. There is also evidence that recharge of the cultures after establishing confluent stromal layers will not greatly improve myelopoiesis. Data in the literature indicate that PHA-responsive T lymphocytes persist for up to 5 weeks in human but not in murine long-term marrow cultures. We therefore analyzed the effects of recharging micro long-term bone marrow cultures with bone marrow cell samples depleted by T lymphocytes. Depletion was performed in a complement-mediated cytotoxicity assay by applying the monoclonal antibody CAMPATH-1. Our data show that regardless of whether T cells were removed only at recharge, at both initiation and recharge, or only at initiation, obvious enhancement could neither be achieved in the GM-CFC production nor in the proliferation period. Furthermore, no advantage was seen when using syngeneic marrow cells. We conclude that in allogeneic long-term marrow cultures hemopoiesis is not limited by immunological incompatibilities.  相似文献   

20.
Highly purified human tonsillar B lymphocytes at different stages of activation were incubated with leukotriene B4 (LTB4). As a key marker for activation, we used the CD23 Ag. LTB4 enhanced the CD23 expression on resting B cells in synergy with B cell-stimulating factors from 4% to 50%. Maximal effect of LTB4 was observed at 10(-10) M to 10(-12) M. LTB4 also augmented the S and M phase entries as well as Ig secretion in synergy with IL-2 and IL-4. In contrast, 5S,12S-dihydroxyeicosatetraenoic acid, an isomer of LTB4, and leukotriene C4 lacked these effects. The results indicate that LTB4 amplifies lymphokine-driven activation, replication, and differentiation of human B lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号