首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer''s disease (AD), Parkinson''s disease (PD) and Huntington''s disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.  相似文献   

2.
Protein folding and clearance networks sense and respond to misfolded and aggregation-prone proteins by activating cytoprotective cell stress responses that safeguard the proteome against damage, maintain the health of the cell, and enhance lifespan. Surprisingly, cellular proteostasis undergoes a sudden and widespread failure early in Caenorhabditis elegans adulthood, with marked consequences on proteostasis functions later in life. These changes in the regulation of quality control systems, such as chaperones, the ubiquitin proteasome system and cellular stress responses, are controlled cell-nonautonomously by the proliferation of germline stem cells. Here, we review recent studies examining changes in proteostasis upon transition to adulthood and how proteostasis is modulated by reproduction onset, focusing on C. elegans. Based on these and our own findings, we propose that the regulation of quality control systems is actively remodeled at the point of transition between development and adulthood to influence the subsequent course of aging.  相似文献   

3.
Maintenance of cellular protein homeostasis (proteostasis) depends on a complex network of molecular chaperones, proteases and other regulatory factors. Proteostasis deficiency develops during normal aging and predisposes individuals for many diseases, including neurodegenerative disorders. Here we describe sensor proteins for the comparative measurement of proteostasis capacity in different cell types and model organisms. These sensors are increasingly structurally destabilized versions of firefly luciferase. Imbalances in proteostasis manifest as changes in sensor solubility and luminescence activity. We used EGFP-tagged constructs to monitor the aggregation state of the sensors and the ability of cells to solubilize or degrade the aggregated proteins. A set of three sensor proteins serves as a convenient toolkit to assess the proteostasis status in a wide range of experimental systems, including cell and organism models of stress, neurodegenerative disease and aging.  相似文献   

4.
Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The different mutant proteins share ubiquitous expression and abnormal proteostasis, with misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration. This highlights the relevance of the full protein context where the polyglutamine expansion occurs and suggests different interactions with the cellular proteostasis machinery. Molecular chaperones are key elements of the proteostasis machinery and therapeutic targets for neurodegeneration. Here, we provide a focused review on Hsp90, Hsp70, and their co-chaperones, and how their genetic or pharmacological modulation affects the proteostasis and disease phenotypes in cellular and animal models of polyglutamine disorders. The emerging picture is that, in principle, Hsp70 modulation may be more amenable for long-term treatment by promoting a more selective clearance of mutant proteins than Hsp90 modulation, which may further decrease the necessary wild-type counterparts. It seems, nevertheless, unlikely that a single Hsp70 modulator will benefit all polyglutamine diseases. Indeed, available data, together with insights from effects on tau and alpha-synuclein in models of Alzheimer’s and Parkinson’s diseases, indicates that Hsp70 modulators may lead to different effects on the proteostasis of different mutant and wild-type client proteins. Future studies should include the further development of isoform selective inhibitors, namely to avoid off-target effects on Hsp in the mitochondria, and their characterization in distinct polyglutamine disease models to account for client protein-specific differences.  相似文献   

5.
蛋白质的折叠问题一直是生物学研究的前沿之一,蛋白质稳态平衡的破坏与衰老及很多神经退行性疾病的发病机理密切相关,而蛋白质的正确折叠与蛋白质稳态在很大程度上取决于分子伴侣参与构建的复杂网络。许多研究表明,抗体可以作为分子伴侣促进蛋白质的正确折叠,并阻止蛋白质的异常聚集,抗体所具有的严格底物特异性使其具备了治疗特定蛋白质折叠病、帮助包涵体复性等应用潜力。本文简要介绍了分子伴侣的研究进展,详细阐述了具有分子伴侣功能的抗体及单链抗体的研究进展,最后重点讨论了可抑制蛋白质聚集的抗体的研究近况。  相似文献   

6.
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.  相似文献   

7.
Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra‐ to intermolecular disulfide bond relay mechanism. Chaperone‐active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol‐containing compounds and proteins, and appear in parallel with reduction‐induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space.SignificanceChaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction‐induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.  相似文献   

8.
The pathologies of many serious human diseases are thought to develop from the effects of intra- or extracellular aggregates of non-native proteins. Inside cells, chaperone and protease systems regulate protein folding; however, little is known about any corresponding mechanisms that operate extracellularly. The identification of these mechanisms is important for the development of new disease therapies. This review briefly discusses the consequences of protein misfolding, the intracellular mechanisms that control folding and the potential corresponding extracellular control processes. Finally, a new speculative model is described, which proposes that newly discovered extracellular chaperones bind to exposed regions of hydrophobicity on non-native, extracellular proteins to target them for receptor-mediated endocytosis and intracellular, lysosomal degradation.  相似文献   

9.
Stunning advances have been achieved in addressing the protein folding problem, providing deeper understanding of the mechanisms by which proteins navigate energy landscapes to reach their native states and enabling powerful algorithms to connect sequence to structure. However, the realities of the in vivo protein folding problem remain a challenge to reckon with. Here, we discuss the concept of the “proteome folding problem”—the problem of how organisms build and maintain a functional proteome—by admitting that folding energy landscapes are characterized by many misfolded states and that cells must deploy a network of chaperones and degradation enzymes to minimize deleterious impacts of these off-pathway species. The resulting proteostasis network is an inextricable part of in vivo protein folding and must be understood in detail if we are to solve the proteome folding problem. We discuss how the development of computational models for the proteostasis network’s actions and the relationship to the biophysical properties of the proteome has begun to offer new insights and capabilities.  相似文献   

10.
Aging and age‐related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin‐mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half‐lives and protein turnover at the level of individual proteins in vivo. For large‐scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long‐lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age‐related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.  相似文献   

11.
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their “client proteins,” some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.  相似文献   

12.
13.
Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker''s yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.  相似文献   

14.
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.  相似文献   

15.
The in vivo formation of fibrillar proteinaceous deposits called amyloid is associated with more than 40 serious human diseases, collectively referred to as protein deposition diseases. In many cases the amyloid deposits are extracellular and are found associated with newly identified abundant extracellular chaperones (ECs). Evidence is presented suggesting an important regulatory role for ECs in amyloid formation and disposal in the body. A model is presented which proposes that, under normal conditions, ECs stabilize extracellular misfolded proteins by binding to them, and then guide them to specific cell receptors for uptake and subsequent degradation. Thus ECs and their receptors may be critical parts of a quality control system to protect the body against dangerously hydrophobic proteins/peptides. However, it also appears possible that in the presence of a high molar excess of misfolded protein, such as might occur during disease, the limited amounts of ECs available may actually exacerbate pathology. Further advances in understanding of the mechanisms that control extracellular protein folding are likely to identify new strategies for effective disease therapies.  相似文献   

16.
Almeida MR  Saraiva MJ 《FEBS letters》2012,586(18):2891-2896
Increasing evidence indicates that accumulation of misfolded proteins in the form of oligomers, protofibrils or amyloid fibrils, and their consequences in triggering intracellular signaling cascades with toxic consequences represent unifying events in many of slowly progressive neurodegenerative disorders. Studies with small compounds or molecules, known to recognize and disrupt amyloidogenic structures, have proven efficient in promoting clearance of protein aggregates in experimental models of systemic and localized forms of amyloidoses. Doxycycline and EGCG were efficient in removing aggregates in pre-clinical studies in a transgenic mouse model for transthyretin (TTR) systemic amyloidosis and represent an opportunity to address mechanisms and key players in deposit removal. Extracellular chaperones, such as clusterin and metalloproteinases play an important role in this process.  相似文献   

17.
All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC‐dependent modulation of proteostasis requires several different signaling pathways, including hsf‐1 and daf‐16/kri‐1/tcer‐1, daf‐12, daf‐9, daf‐36, nhr‐80, and pha‐4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma.  相似文献   

18.
The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T‐complex protein‐1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.  相似文献   

19.
20.
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.

The host cell’s endoplasmic reticulum proteostasis network has a profound, constraining impact on the protein sequence space accessible to HIV’s envelope protein, which is a major target of the host’s adaptive immune system; in particular, upregulation of stringent quality control pathways appears to restrict the viability of destabilizing envelope variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号