首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase 2A (PP2A) is a major phospho-Ser/Thr phosphatase and a key regulator of cellular signal transduction pathways. While PP2A dysfunction has been linked to human cancer and neurodegenerative disorders such as Alzheimer’s disease (AD), PP2A regulation remains relatively poorly understood. It has been reported that the PP2A catalytic subunit (PP2Ac) is inactivated by a single phosphorylation at the Tyr307 residue by tyrosine kinases such as v-Src. However, multiple mass spectrometry studies have revealed the existence of other putative PP2Ac phosphorylation sites in response to activation of Src and Fyn, two major Src family kinases (SFKs). Here, using PP2Ac phosphomutants and novel phosphosite-specific PP2Ac antibodies, we show that cellular pools of PP2Ac are instead phosphorylated on both Tyr127 and Tyr284 upon Src activation, and on Tyr284 following Fyn activation. We found these phosphorylation events enhanced the interaction of PP2Ac with SFKs. In addition, we reveal SFK-mediated phosphorylation of PP2Ac at Y284 promotes dissociation of the regulatory Bα subunit, altering PP2A substrate specificity; the phosphodeficient Y127/284F and Y284F PP2Ac mutants prevented SFK-mediated phosphorylation of Tau at the CP13 (pSer202) epitope, a pathological hallmark of AD, and SFK-dependent activation of ERK, a major growth regulatory kinase upregulated in many cancers. Our findings demonstrate a novel PP2A regulatory mechanism that challenges the existing dogma on the inhibition of PP2A catalytic activity by Tyr307 phosphorylation. We propose dysregulation of SFK signaling in cancer and AD can lead to alterations in PP2A phosphorylation and subsequent deregulation of key PP2A substrates, including ERK and Tau.  相似文献   

2.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signalling that has gained recent attention as a potential target for anti-cancer therapies. SK1 activity, subcellular localization and oncogenic function are regulated by phosphorylation and dephosphorylation at Ser225. ERK1/2 have been identified as the protein kinases responsible for phosphorylation and activation of SK1. Conversely, dephosphorylation and deactivation of SK1 occurs by protein phosphatase 2A (PP2A). Active PP2A, however, is a heterotrimer, composed of tightly associated catalytic and structural subunits that can interact with an array of regulatory subunits, which are critical for determining holoenzyme substrate specificity and subcellular localization. Thus, PP2A represents a large family of holoenzyme complexes with different activities and diverse substrate specificities. To date the regulatory subunit essential for targeting PP2A to SK1 has remained undefined. Here, we demonstrate a critical role for the B'α (B56α/PR61α/PPP2R5A) regulatory subunit of PP2A in SK1 dephosphorylation. B'α was found to interact with the c-terminus of SK1, and reduce SK1 phosphorylation when overexpressed, while having no effect on upstream ERK1/2 activation. siRNA-mediated knockdown of B'α increased SK1 phosphorylation, activity and membrane localization of endogenous SK1. Furthermore, overexpression of B'α blocked agonist-induced translocation of SK1 to the plasma membrane and abrogated SK1-induced neoplastic transformation of NIH3T3 fibroblasts. Thus, the PP2A-B'α holoenzyme appears to function as an important endogenous regulator of SK1.  相似文献   

3.
Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.  相似文献   

4.
The optimal cellular responses to DNA damage are modulated by kinase and phosphatase. The ataxia telangiectasia mutated (ATM) is a Ser/Thr kinase which is the core of the DNA damage signaling apparatus. The Ser/Thr protein phosphatase type 1 (PP1) inhibitor, tautomycetin (TC) and an antibody to the phospho-(S/T)Q sites of the ATM substrate were used to identify the common substrates for PP1 and ATM in regulating the pathway for DNA damage response. Ribosomal protein S6 (RPS6) was first identified as a substrate for PP1 and ATM. The phosphorylation at Ser247 of RPS6 was then significantly decreased by PP1-mediated dephosphorylation immediately after UV irradiation. These results suggest that PP1 specifically dephosphorylated RPS6 at phospho-Ser247 in vivo. In response to DNA damage, ATM activity was finally required for the phosphorylation of RPS6 at Ser247. We propose from these results a novel mechanism for modulating the RPS6 function by PP1 and ATM which regulates cell growth and survival in response to DNA-damage stimuli.  相似文献   

5.
The optimal cellular responses to DNA damage are modulated by kinase and phosphatase. The ataxia telangiectasia mutated (ATM) is a Ser/Thr kinase which is the core of the DNA damage signaling apparatus. The Ser/Thr protein phosphatase type 1 (PP1) inhibitor, tautomycetin (TC) and an antibody to the phospho-(S/T)Q sites of the ATM substrate were used to identify the common substrates for PP1 and ATM in regulating the pathway for DNA damage response. Ribosomal protein S6 (RPS6) was first identified as a substrate for PP1 and ATM. The phosphorylation at Ser247 of RPS6 was then significantly decreased by PP1-mediated dephosphorylation immediately after UV irradiation. These results suggest that PP1 specifically dephosphorylated RPS6 at phospho-Ser247 in vivo. In response to DNA damage, ATM activity was finally required for the phosphorylation of RPS6 at Ser247. We propose from these results a novel mechanism for modulating the RPS6 function by PP1 and ATM which regulates cell growth and survival in response to DNA-damage stimuli.  相似文献   

6.
Recent genetic studies in Drosophila identified Kibra as a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. The cellular function and regulation of human KIBRA remain largely unclear. Here, we show that KIBRA is a phosphoprotein and that phosphorylation of KIBRA is regulated in a cell cycle-dependent manner with the highest level of phosphorylated KIBRA detected in mitosis. We further demonstrate that the mitotic kinases Aurora-A and -B phosphorylate KIBRA both in vitro and in vivo. We identified the highly conserved Ser(539) as the primary phosphorylation site for Aurora kinases. Moreover, we found that wild-type, but not catalytically inactive, protein phosphatase 1 (PP1) associates with KIBRA. PP1 dephosphorylated Aurora-phosphorylated KIBRA. KIBRA depletion impaired the interaction between Aurora-A and PP1. We also show that KIBRA associates with neurofibromatosis type 2/Merlin in a Ser(539) phosphorylation-dependent manner. Phosphorylation of KIBRA on Ser(539) plays a role in mitotic progression. Our results suggest that KIBRA is a physiological substrate of Aurora kinases and reveal a new avenue between KIBRA/Hippo signaling and the mitotic machinery.  相似文献   

7.
The protein-tyrosine phosphatase PTP-1B is an important regulator of intracellular protein tyrosine phosphorylation, and is itself regulated by phosphorylation. We report that PTP-1B and its yeast analog, YPTP, are phosphorylated and activated by members of the CLK family of dual specificity kinases. CLK1 and CLK2 phosphorylation of PTP-1B in vitro activated the phosphatase activity approximately 3-5-fold using either p-nitrophenol phosphate, or tyrosine-phosphorylated myelin basic protein as substrates. Co-expression of CLK1 or CLK2 with PTP-1B in HEK 293 cells led to a 2-fold stimulation of phosphatase activity in vivo. Phosphorylation of PTP-1B at Ser(50) by CLK1 or CLK2 is responsible for its enzymatic activation. These findings suggest that phosphorylation at Ser(50) by serine threonine kinases may regulate the activation of PTP-1B in vivo. We also show that CLK1 and CLK2 phosphorylate and activate the S. cerevisiae PTP-1B family member, YPTP1. CLK1 phosphorylation of YPTP1 led to a 3-fold stimulation of phosphatase activity in vitro. We demonstrate that CLK phosphorylation of Ser(83) on YPTP1 is responsible for the activation of this enzyme. These findings demonstrate that the CLK kinases activate PTP-1B family members, and this phosphatase may be an important cellular target for CLK action.  相似文献   

8.
Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5   总被引:3,自引:0,他引:3  
The Raf-MEK-ERK pathway couples growth factor, mitogenic and extracellular matrix signals to cell fate decisions such as growth, proliferation, migration, differentiation and survival. Raf-1 is a direct effector of the Ras GTPase and is the initiating kinase in this signalling cascade. Although Raf-1 activation is well studied, little is known about how Raf-1 is inactivated. Here, we used a proteomic approach to identify molecules that may inactivate Raf-1 signalling. Protein phosphatase 5 (PP5) was identified as an inactivator that associates with Raf-1 on growth factor stimulation and selectively dephosphorylates an essential activating site, Ser 338. The PP5-mediated dephosphorylation of Ser 338 inhibited Raf-1 activity and downstream signalling to MEK, an effect that was prevented by phosphomimetic substitution of Ser 338, or by ablation of PP5 catalytic function. Furthermore, depletion of endogenous PP5 increased cellular phospho-Ser 338 levels. Our results suggest that PP5 is a physiological regulator of Raf-1 signalling pathways.  相似文献   

9.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

10.
Merlin (moesin-ezrin-radixin like protein), the product of neurofibromatosis type 2 gene, was primarily recognized as a tumor suppressor, but it also functions as a membrane-cytoskeletal linker and regulator of multiple signaling pathways. The activity and localization of merlin is regulated by head to tail folding that is controlled by phosphorylation of the Ser518 side chain. Merlin localizes in the nucleus when the Ser518 side chain is not phosphorylated, while the phosphorylated form is present in the cytoplasm and the plasma membrane. In this work interactions and their impact on the subcellular localization and phosphorylation state of the Ser518 side chain of merlin were investigated in endothelial cells. It is shown that merlin (dephospho-Ser518 form) interacts in the nucleus of endothelial cells with the scaffolding protein EBP50, a member of the Na+/H+exchanger regulatory factor family. Upon EBP50 depletion, merlin translocated from the nucleus, suggesting that binding of merlin to EBP50 is critical in the nuclear localization of merlin. Along with the translocation, the phosphorylation level of phospho-Ser518-merlin was increased in EBP50 depleted cells. TIMAP (TGFβ-inhibited membrane-associated protein), a type 1 protein phosphatase (PP1) regulatory subunit, was newly recognized as an interacting partner for merlin. Domain mapping using truncated mutant forms in GST pull down revealed that the N-terminal half of TIMAP (aa 1-290) and the FERM domain of merlin are the regions responsible for the interaction.The catalytic subunit of PP1 (PP1c) was present in all merlin-TIMAP pull down or immunoprecipitation samples demonstrating that merlin actually interacts with the PP1c-TIMAP holoenzyme. On the other hand, from TIMAP depleted cells, without its targeting protein, PP1c could not bind to merlin. Also, when the phosphatase activity of PP1c-TIMAP was inhibited either with depletion of TIMAP or by treatment of the cells with specific PP1 inhibitor, there was an increase in the amount of phospho-Ser518 form of merlin in the membrane of the cells. These data strongly suggest that the PP1c-TIMAP- complex dephosphorylates phospho-Ser518-merlin. ECIS measurements indicate that phospho-merlin accelerates in vitro wound healing of the endothelial monolayer.In conclusion, in endothelial cells, EBP50 is required for the nuclear localization of merlin and the PP1c-TIMAP holoenzyme plays an important role in the dephosphorylation of merlin on its Ser518 side chain, which influence cell migration and proliferation.  相似文献   

11.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, is stimulated by N-terminal phosphorylation by several kinases and inhibited by protein serine/threonine phosphatase 2A (PP2A). PP2A is a family of heterotrimeric holoenzymes containing one of more than a dozen different regulatory subunits. In comparison with rat forebrain extracts, adrenal gland extracts exhibited TH hyperphosphorylation at Ser(19), Ser(31), and Ser(40), as well as reduced phosphatase activity selectively toward phosphorylated TH. Because the B'beta regulatory subunit of PP2A is expressed in brain but not in adrenal glands, we tested the hypothesis that PP2A/B'beta is a specific TH phosphatase. In catecholamine-secreting PC12 cells, inducible expression of B'beta decreased both N-terminal Ser phosphorylation and in situ TH activity, whereas inducible silencing of endogenous B'beta had the opposite effect. Furthermore, PP2A/B'beta directly dephosphorylated TH in vitro. As to specificity, other PP2A regulatory subunits had negligible effects on TH activity and phosphorylation in situ and in vitro. Whereas B'beta was highly expressed in dopaminergic cell bodies in the substantia nigra, the PP2A regulatory subunit was excluded from TH-positive terminal fields in the striatum and failed to colocalize with presynaptic markers in general. Consistent with a model in which B'beta enrichment in neuronal cell bodies helps confine catecholamine synthesis to axon terminals, TH phosphorylation was higher in processes than in somata of dopaminergic neurons. In summary, we show that B'beta recruits PP2A to modulate TH activity in a tissue- and cell compartment specific fashion.  相似文献   

12.
Occludin is hyperphosphorylated on Ser and Thr residues in intact epithelial tight junction (TJ); however, the role of this phosphorylation in the assembly of TJ is unclear. The influence of protein phosphatases PP2A and PP1 on the assembly of TJ and phosphorylation of occludin was evaluated in Caco-2 cells. Protein phosphatase inhibitors and reduced expression of PP2A-Calpha and PP1alpha accelerated the calcium-induced increase in transepithelial electrical resistance and barrier to inulin permeability and also enhanced the junctional organization of occludin and ZO-1 during TJ assembly. Phosphorylation of occludin on Thr residues, but not on Ser residues, was dramatically reduced during the disassembly of TJ and was gradually increased during the reassembly. PP2A and PP1 co-immunoprecipitate with occludin, and this association was reduced during the assembly of TJ. Glutathione S-transferase (GST) pull-down assay using recombinant GST-occludin demonstrated that cellular PP2A and PP1 bind to the C-terminal tail of occludin, and these interactions were also reduced during the assembly of TJ. A pairwise binding assay using GST-occludin and purified PP2A and PP1 demonstrates that PP2A and PP1 directly interacts with the C-terminal tail of occludin. In vitro incubation of phospho-occludin with PP2A or PP1 indicated that PP2A dephosphorylates occludin on phospho-Thr residues, whereas PP1 dephosphorylates it on phospho-Ser. This study shows that PP2A and PP1 directly interact with occludin and negatively regulate the assembly of TJ by modulating the phosphorylation status of occludin.  相似文献   

13.
We have recently shown that in colon cancer cells, Vitamin D receptor (VDR) interacts with the catalytic subunit of Ser/Thr protein phosphatases, PP1c and PP2Ac, and induces their enzymatic activity in a ligand-dependent manner. The VDR-PP1c and VDR-PP2Ac interactions were ligand independent in vivo, and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-mediated increase in VDR-associated phosphatase activity resulted in dephosphorylation and inactivation of p70S6 kinase in colon cancer cells. Here, we demonstrate that in myeloid leukemia cells, 1,25(OH)(2)D(3) treatment increased the Thr389 phosphorylation of p70S6 kinase. Accordingly, 1,25(OH)(2)D(3) decreased VDR-associated Ser/Thr protein phosphatase activity by dissociating VDR-PP1c and VDR-PP2Ac interactions. Further, 1,25(OH)(2)D(3) increased the association between VDR and Thr389 phosphorylated p70S6 kinase. Finally, by using non-secosteroidal VDR ligands, we demonstrate a separation between transactivation and p70S6 kinase phosphorylation activities of VDR and show pharmacologically that p70S6 kinase phosphorylation correlates with HL-60 cell differentiation.  相似文献   

14.
Recognition of pathogen‐associated molecular patterns (PAMPs) by surface‐localized pattern‐recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP‐triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co‐receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti‐bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A‐based regulation leads to increased steady‐state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface‐localized immune receptor complexes.  相似文献   

15.
Polyamine depletion prevents apoptosis by increasing serine/threonine phosphorylation leading to either inactivation or activation of pro- and anti-apoptotic proteins, respectively. Despite evidence that protein kinases are regulators of apoptosis, a specific role for protein phosphatases in regulating cell survival has not been established. In this study, we show that polyamine depletion inhibits serine/threonine phosphatase 2A (PP2A). Inhibition of PP2A in cells depleted of polyamines correlated well with increased phosphorylation of Bad at Ser112. Bad Ser112 phosphorylation in response to tumor necrosis factor (TNF)-alpha treatment decreased with time in cells grown in control as well as those grown in the presence of alpha-difluoromethylornithine plus putrescine. However, a sustained increase in the levels of Bad Ser112 phosphorylation was maintained in response to TNF-alpha treatment in cells grown in the presence of alpha-difluoromethylornithine. Inhibition of PP2A by okadaic acid and fostriecin or PP2A small interfering RNA transfection significantly decreased TNF-alpha-induced apoptosis in control and polyamine-depleted cells. Inhibition of PP2A by okadaic acid: 1) increased Bad and Bcl-2 phosphorylation at Ser112 and Ser70, respectively; 2) increased ERK activity; 3) prevented JNK activation; 4) prevented cytochrome c release, and activation of caspases-9 and -3 in response to TNF-alpha. Inhibition of MEK1 by U0126 prevented phosphorylation of Bad at Ser112. These results indicate that polyamines regulate PP2A activity, and inhibition of PP2A in response to polyamine depletion increases steady state levels of Bad and Bcl-2 proteins and their phosphorylation and thereby prevents cytochrome c release, caspase-9, and caspase-3 activation.  相似文献   

16.
Rotenone has been shown to induce many parkinsonian features and has been widely used in chemical models of Parkinson’s disease (PD). Its use is closely associated with α-synuclein (α-syn) phosphorylation both in vivo and in vitro. However, the mechanisms whereby rotenone regulates α-syn phosphorylation remain unknown. Protein phosphatase 2A (PP2A) has been shown to play an important role in α-syn dephosphorylation. We therefore investigated if rotenone caused α-syn phosphorylation by down-regulation of PP2A activity in mice. Rotenone increased the phosphorylation of α-syn at Ser129, consistent with the inhibition of PP2A activity by increased phosphorylation of tyrosine 307 at the catalytic subunit of PP2A (pTyr307 PP2Ac). We further explored the interactions among rotenone, PP2A, and α-syn in SK-N-SH cells and primary rat cortical neurons. Rotenone inhibited PP2A activity via phosphorylation of PP2Ac at Tyr307. The reduction in PP2A activity and rotenone cytotoxicity were reversed by treatment with the PP2A agonist, C2 ceramide, and the Src kinase inhibitor, SKI606. Immunoprecipitation experiments showed that rotenone induced an increase in calmodulin–Src complex in SK-N-SH cells, thus activating Src kinase, which in turn phosphorylated PP2A at Tyr307 and inhibited its activity. C2 ceramide and SKI606 significantly reversed the rotenone-induced phosphorylation and aggregation of α-syn by increasing PP2A activity. These results demonstrate that rotenone-reduced PP2A activity via Src kinase is involved in the phosphorylation of α-syn. These findings clarify the novel mechanisms whereby rotenone can induce PD.  相似文献   

17.
18.
19.
The protein phosphatase 2C (PP2C) family represents one of the four major protein Ser/Thr phosphatase activities in mammalian cells and contains at least 13 distinct gene products. Although PP2C family members regulate a variety of cellular functions, mechanisms of regulation of their activities are largely unknown. Here, we show that PP2Czeta, a PP2C family member that is enriched in testicular germ cells, is phosphorylated by c-Jun NH 2-terminal kinase (JNK) but not by p38 in vitro. Mass spectrometry and mutational analyses demonstrated that phosphorylation occurs at Ser (92), Thr (202), and Thr (205) of PP2Czeta. Phosphorylation of these Ser and Thr residues of PP2Czeta ectopically expressed in 293 cells was enhanced by osmotic stress and was attenuated by a JNK inhibitor but not by p38 or MEK inhibitors. Phosphorylation of PP2Czeta by TAK1-activated JNK repressed its phosphatase activity in cells, and alanine mutation at Ser (92) but not at Thr (202) or Thr (205) suppressed this inhibition. Taken together, these results suggest that specific phosphorylation of PP2Czeta at Ser (92) by stress-activated JNK attenuates its phosphatase activity in cells.  相似文献   

20.
The protein phosphatase 2A (PP2A) acts on several kinases in the extracellular signal-regulated kinase (ERK) signaling pathway but whether a specific holoenzyme dephosphorylates ERK and whether this activity is controlled during mitogenic stimulation is unknown. By using both RNA interference and overexpression of PP2A B regulatory subunits, we show that B56, but not B, family members of PP2A increase ERK dephosphorylation, without affecting its activation by MEK. Induction of the early gene product and ERK substrate IEX-1 (ier3) by growth factors leads to opposite effects and reverses B56-PP2A-mediated ERK dephosphorylation. IEX-1 binds to B56 subunits and pERK independently, enhances B56 phosphorylation by ERK at a conserved Ser/Pro site in this complex and triggers dissociation from the catalytic subunit. This is the first demonstration of the involvement of B56-containing PP2A in ERK dephosphorylation and of a B56-specific cellular protein inhibitor regulating its activity in an ERK-dependent fashion. In addition, our results raise a new paradigm in ERK signaling in which ERK associated to a substrate can transphosphorylate nearby proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号