首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E Villa-Moruzzi 《FEBS letters》1992,304(2-3):211-215
Purified cdc2 or cdc2 obtained from HeLa cells in association with p13suc1 activate inactive type-1 protein phosphatase (PP1) (catalytic subunit.inhibitor-2 complex, purified from skeletal muscle). Likewise in the case of PP1 activation by FA/GSK3, activation by cdc2 is accompanied by phosphorylation of inhibitor-2 (I2) and free I2 can be phosphorylated as well. Correlation between PP1 activation and I2 phosphorylation is suggested by the fact that both activation and phosphorylation (a) increase in parallel during incubation with cdc2, (b) decrease in parallel upon subsequent cdc2 inhibition by EDTA, and (c) are inhibited by the cdc2 inhibitor 5,6-dichlorobenzimidazole riboside. cdc2 also phosphorylates the catalytic subunit of PP1, whether in the complex with I2 or as free molecule. The activation of PP1 by cdc2 and by FA/GSK3 is compared.  相似文献   

2.
ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFalpha (tumour necrosis factor alpha). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cepsilon (protein phosphatase 2Cepsilon), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cepsilon inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cepsilon mutant enhanced AP-1 activity. Exogenous PP2Cepsilon associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cepsilon and ASK1 was also observed in mouse brain extracts. PP2Cepsilon directly dephosphorylated ASK1 at Thr845 in vitro. In contrast with PP5, PP2Cepsilon transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cepsilon maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cepsilon and PP5 play different roles in H2O2-induced regulation of ASK1 activity.  相似文献   

3.
Elevated levels of free fatty acids contribute to cardiovascular diseases, but the mechanisms remain poorly understood. The present study was aimed to determine if free fatty acid inhibits the AMP-activated kinase (AMPK). Exposure of cultured bovine aortic endothelial cells (BAECs) to palmitate (0.4 mM) but not to palmitoleic or oleic acid (0.4 mM) for 40 h significantly reduced the Thr(172) phosphorylation of AMPK-alpha without altering its protein expression or the phosphorylation of LKB1-Ser(428), a major AMPK kinase in BAECs. Further, in LKB1-deficient cells, palmitate suppressed AMPK-Thr(172) implying that the inhibitory effects of palmitate on AMPK might be independent of LKB1. In contrast, 2-bromopalmitate, a non-metabolizable analog of palmitate, did not alter the phosphorylation of AMPK and acetyl-CoA carboxylase. Further, palmitate significantly increased the activity of protein phosphatase (PP)2A. Inhibition of PP2A with either okadaic acid, a selective PP2A inhibitor, or PP2A small interference RNA abolished palmitate-induced inhibition on AMPK-Thr(172) phosphorylation. Exposure of BAECs to C(2)-ceramide, a cell-permeable analog of ceramide, mimicked the effects of palmitate. Conversely, fumonisin B1, which selectively inhibits ceramide synthase and decreases de novo formation of ceramide, abolished the effects of palmitate on both PP2A and AMPK. Inhibition of AMPK in parallel with increased PP2A activity was founded in C57BL/6J mice fed with high fat diet (HFD) rich in palmitate but not in mice fed with HFD rich in oleate. Moreover, inhibition of PP2A with PP2A-specific siRNA but not scrambled siRNA reversed HFD-induced inhibition on the phosphorylation of AMPK-Thr(172) and endothelial nitric-oxide synthase (eNOS)-Ser(1177) in mice fed with high fat diets. Taken together, we conclude that palmitate inhibits the phosphorylation of both AMPK and endothelial nitric-oxide synthase in endothelial cells via ceramide-dependent PP2A activation.  相似文献   

4.
Cellular signalling by sphingosine kinase and sphingosine 1-phosphate   总被引:2,自引:0,他引:2  
Leclercq TM  Pitson SM 《IUBMB life》2006,58(8):467-472
Sphingosine kinases, through the formation of the bioactive phospholipid sphingosine 1-phosphate, have been implicated in a diverse range of cellular processes, including cell proliferation, apoptosis, calcium homeostasis, angiogenesis and vascular maturation. The last few years have seen a number of significant advances in understanding of the mechanisms of action, activation, cellular localisation and biological roles of these enzymes. Here we review the current understanding of the regulation of and cellular signalling by sphingosine kinase and sphingosine 1-phosphate and discuss recent findings implicating sphingosine kinase as a potential therapeutic target for the control of cancer, inflammation and a number of other diseases. We suggest that, since the activation and subcellular localization of these enzymes appear to play critical roles in their biological functions, targeting these processes may provide more specific therapeutic options than direct catalytic inhibitors.  相似文献   

5.
The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression.  相似文献   

6.
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation   总被引:17,自引:0,他引:17  
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.  相似文献   

7.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

8.
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.  相似文献   

9.
A soluble, phosphatidic acid-preferring phospholipase A1, expressed in mature bovine testes but not in newborn calf testes, may contribute to the formation or function of sperm. Here we incubated a recombinant preparation of the phospholipase in vitro with several enzymes including protein kinase CK2 (CK2), extracellular signal-regulated kinase 2 (ERK2), and protein phosphatase 2A (PP2A) to identify effects that might be of regulatory importance in vivo. Major findings were that 1) CK2 phosphorylated the phospholipase on serines 93, 105, and 716; 2) ERK2 phosphorylated the enzyme on serine 730; 3) there was cross-antagonism between the reactions that phosphorylated serines 716 and 730; 4) PP2A selectively hydrolyzed phosphate groups that were esterified to serines 716 and 730; 5) CK2alpha formed a stable, MgATP/MgGTP-dependent complex with the phospholipase by a novel mechanism; and 6) the complex showed reduced phospholipase activity and resembled a complex identified in homogenates of macaque testis. These results provide the first available information about the effects of reactions of phosphorylation and dephosphorylation on the behavior of the phospholipase, shed light on properties of CK2alpha that may be required for the formation of complexes with its substrates, and raise the possibility that a complex containing CK2alpha and the phospholipase may play a special biological role in the testis.  相似文献   

10.
Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.  相似文献   

11.
A protein phosphatase assay, selective for protein phosphatase 2A, has been developed. Bovine histone H1 phosphorylated by protein kinase C and [gamma-32P]ATP, designated H1(C), was tested as the substrate for various preparations of protein phosphatases 1 and 2A. The phosphatase 2A preparations were 10-60-times more active with H1(C) as the substrate when compared to phosphorylase a. The phosphatase 1 enzymes showed very little dephosphorylation of the H1(C) substrate, the activity being less than 5% of the phosphorylase phosphatase activity. This preference and selectivity was demonstrated for purified phosphatase preparations in addition to fresh tissue extracts. The assay provides a rapid, simple assay for the routine analysis of phosphatase 2A in the presence of phosphatase 1, without the use of heat-stable inhibitor proteins.  相似文献   

12.
The Raf-1 kinase plays a key role in relaying proliferation signals elicited by mitogens or oncogenes. Raf-1 is regulated by complex and incompletely understood mechanisms including phosphorylation. A number of studies have indicated that phosphorylation of serines 259 and 621 can inhibit the Raf-1 kinase. We show that both serines are hypophosphorylated during early mitogenic stimulation and that hypophosphorylation correlates with peak Raf-1 activation. Concentrations of okadaic acid that selectively inhibit protein phosphatase 2A (PP2A) induce phosphorylation of these residues and prevent maximal activation of the Raf-1 kinase. This effect is mediated via phosphorylation of serine 259. The PP2A core heterodimer forms complexes with Raf-1 in vivo and in vitro. These data identify PP2A as a positive regulator of Raf-1 activation and are the first indication that PP2A may support the activation of an associated kinase.  相似文献   

13.
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.  相似文献   

14.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

15.
Sphingosine kinase (Sphk) phosphorylates sphingosine into sphingosine-1-phosphate (S1P), but its recently identified isoform Sphk2 has been suggested to have distinct subcellular localization and substrate specificity. We demonstrate here that, surprisingly, Sphk2(-/-) CD4(+) T cells exhibit a hyperactivated phenotype with significantly enhanced proliferation and cytokine secretion in response to IL-2 as well as reduced sensitivity to regulatory T cell-mediated suppression in vitro, apparently independent of effects upon S1P. Such findings appear to reflect a requirement for Sphk2 to suppress IL-2 signaling because, in Sphk2(-/-) CD4(+) T cells, IL-2 induced abnormally accentuated STAT5 phosphorylation and small interfering RNA knockdown of STAT5 abrogated their hyperactive phenotype. This pathway physiologically modulates autoinflammatory responses, because Sphk2(-/-) T cells induced more rapid and robust inflammatory bowel disease in scid recipients. Thus, Sphk2 regulates IL-2 pathways in T cells, and the modulation of Sphk2 activity may be of therapeutic utility in inflammatory and/or infectious diseases.  相似文献   

16.
The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme’s sub-cellular localisation.  相似文献   

17.
Sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a lipid messenger that plays an important role in a variety of mammalian cell processes, including inhibition of apoptosis and stimulation of cell proliferation. Basal levels of S1P in cells are generally low but can increase rapidly when cells are exposed to various agonists through rapid and transient activation of SK activity. To date, elucidation of the exact signaling pathways affected by these elevated S1P levels has relied on the use of SK inhibitors that are known to have direct effects on other enzymes in the cell. Furthermore, these inhibitors block basal SK activity, which is thought to have a housekeeping function in the cell. To produce a specific inhibitor of SK activation we sought to generate a catalytically inactive, dominant-negative SK. This was accomplished by site-directed mutagenesis of Gly(82) to Asp of the human SK, a residue identified through sequence similarity to the putative catalytic domain of diacylglycerol kinase. This mutant had no detectable SK activity when expressed at high levels in HEK293T cells. Activation of endogenous SK activity by tumor necrosis factor-alpha (TNFalpha), interleukin-1beta, and phorbol esters in HEK293T cells was blocked by expression of this inactive sphingosine kinase (hSK(G82D)). Basal SK activity was unaffected by expression of hSK(G82D). Expression of hSK(G82D) had no effect on TNFalpha-induced activation of protein kinase C and sphingomyelinase activities. Thus, hSK(G82D) acts as a specific dominant-negative SK to block SK activation. This discovery provides a powerful tool for the elucidation of the exact signaling pathways affected by elevated S1P levels following SK activation. To this end we have employed the dominant-negative SK to demonstrate that TNFalpha activation of extracellular signal-regulated kinases 1 and 2 (ERK1,2) is dependent on SK activation.  相似文献   

18.
Ribosomal protein S6 (rpS6) is a critical component of the 40 S ribosomal subunit that mediates translation initiation at the 5'-m(7)GpppG cap of mRNA. In response to mitogenic stimuli, rpS6 undergoes ordered C-terminal phosphorylation by p70 S6 kinases and p90 ribosomal S6 kinases on four conserved Ser residues (Ser-235, Ser-236, Ser-240, and Ser-244) whose modification potentiates rpS6 cap binding activity. A fifth site, Ser-247, is also known to be phosphorylated, but its function and regulation are not well characterized. In this study, we employed phospho-specific antibodies to show that Ser-247 is a target of the casein kinase 1 (CK1) family of protein kinases. CK1-dependent phosphorylation of Ser-247 was induced by mitogenic stimuli and required prior phosphorylation of upstream S6 kinase/ribosomal S6 kinase residues. CK1-mediated phosphorylation of Ser-247 also enhanced the phosphorylation of upstream sites, which implies that bidirectional synergy between C-terminal phospho-residues is required to sustain rpS6 phosphorylation. Consistent with this idea, CK1-dependent phosphorylation of rpS6 promotes its association with the mRNA cap-binding complex in vitro. Additionally, we show that protein phosphatase 1 (PP1) antagonizes rpS6 C terminus phosphorylation and cap binding in intact cells. These findings further our understanding of rpS6 phospho-regulation and define a direct link between CK1 and translation initiation.  相似文献   

19.
Myosin phosphatase targeting subunit 3 (MYPT3) and transforming growth factor-beta-inhibited membrane-associated protein (TIMAP) are two closely related myosin-binding targeting subunits of protein phosphatase 1 (PP1c) with a characteristic CAAX (where AA indicates aliphatic amino acid) box at the C termini. Here we show that MYPT3 can be a substrate for protein kinase A (PKA). We first mapped the multiple phosphorylation sites within a central conserved motif. Deletion or mutations of this motif resulted in enhancement of the associated PP1c activity, suggesting that phosphorylation of MYPT3 may play an important role in regulating PP1c catalytic activity. However, unlike the other known MYPTs, which upon phosphorylation inhibit PP1c, PKA phosphorylation of MYPT3 resulted in PP1c activation, indicating a different mode of action. There is a direct interaction between the central conserved phosphorylated site motif with the N-terminal ankyrin repeat region; this interaction was significantly reduced with MYPT3 phosphorylation or acidic phosphorylation site mutations, with concomitant alterations in biochemical and morphological consequences. We therefore propose a novel mechanism for the phosphorylation of MYPT3 by PKA and activation of the catalytic activity through direct interaction of a central region of MYPT3 with its N-terminal region.  相似文献   

20.
Sphingosine is one of a number of cationic amphiphiles that inhibit the activity of protein kinase C (PKC) in commonly used assay conditions. This inhibition occurs only at high concentrations of this amphiphile. In the presence of excess negative charge from oleic acid, the addition of sphingosine surprisingly leads to activation of PKC. The results are explicable in terms of the dual role of charge and lipid phase propensity. When the positive charge on sphingosine is compensated by the negative charge on oleic acid, sphingosine, a hexagonal phase promoting amphiphile, becomes an activator of PKC. This does not occur with a bilayer stabilizing cationic amphiphile, N,N,N-Trimethyl-N'-cholesteryl amido-ethyl ammonium which is an inhibitor of PKC at all mol fractions, as well as in the presence of oleic acid. The results indicate that effects of sphingosine on more complex biological systems should be interpreted with caution because of this dual role of the amphiphile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号