首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stomatal opening, which controls gas exchanges between plants and the atmosphere, results from an increase in turgor of the two guard cells that surround the pore of the stoma. KAT1 was the only inward K(+) channel shown to be expressed in Arabidopsis guard cells, where it was proposed to mediate a K(+) influx that enables stomatal opening. We report that another Arabidopsis K(+) channel, KAT2, is expressed in guard cells. More than KAT1, KAT2 displays functional features resembling those of native inward K(+) channels in guard cells. Coexpression in Xenopus oocytes and two-hybrid experiments indicated that KAT1 and KAT2 can form heteromultimeric channels. The data indicate that KAT2 plays a crucial role in the stomatal opening machinery.  相似文献   

2.
An inward Shaker K(+) channel identified in Zea mays (maize), ZmK2.1, displays strong regulation by external K(+) when expressed in Xenopus laevis (African clawed frog) oocytes or COS cells. ZmK2.1 is specifically activated by K(+) with an apparent K(m) close to 15 mM independent of the membrane hyperpolarization level. In the absence of K(+), ZmK2.1 appears to enter a nonconducting state. Thus, whatever the membrane potential, this maize channel cannot mediate K(+) influx in the submillimolar concentration range, unlike its relatives in Arabidopsis thaliana. Its expression is restricted to the shoots, the strongest signal (RT-PCR) being associated with vascular/bundle sheath strands. Based on sequence and gene structure, the closest relatives of ZmK2.1 in Arabidopsis are K(+) Arabidopsis Transporter 1 (KAT1) (expressed in guard cells) and KAT2 (expressed in guard cells and leaf phloem). Patch-clamp analyses of guard cell protoplasts reveal a higher functional diversity of K(+) channels in maize than in Arabidopsis. Channels endowed with regulation by external K(+) similar to that of ZmK2.1 (channel activity regulated by external K(+) with a K(m) close to 15 mM, regulation independent of external Ca(2+)) constitute a major component of the maize guard cell inward K(+) channel population. The presence of such channels in maize might reflect physiological traits of C4 and/or monocotyledonous plants.  相似文献   

3.
A functional Shaker potassium channel requires assembly of four α-subunits encoded by a single gene or various genes from the Shaker family. In Arabidopsis thaliana, AtKC1, a Shaker α-subunit that is silent when expressed alone, has been shown to regulate the activity of AKT1 by forming heteromeric AtKC1-AKT1 channels. Here, we investigated whether AtKC1 is a general regulator of channel activity. Co-expression in Xenopus oocytes of a dominant negative (pore-mutated) AtKC1 subunit with the inward Shaker channel subunits KAT1, KAT2 or AKT2, or the outward subunits SKOR or GORK, revealed that the three inward subunits functionally interact with AtKC1 while the outward ones cannot. Localization experiments in plant protoplasts showed that KAT2 was able to re-locate AtKC1 fused to GFP from endomembranes to the plasma membrane, indicating that heteromeric AtKC1-KAT2 channels are efficiently targeted to the plasma membrane. Functional properties of heteromeric channels involving AtKC1 and KAT1, KAT2 or AKT2 were analysed by voltage clamp after co-expression of the respective subunits in Xenopus oocytes. AtKC1 behaved as a regulatory subunit within the heterotetrameric channel, reducing the macroscopic conductance and negatively shifting the channel activation potential. Expression studies showed that AtKC1 and its identified Shaker partners have overlapping expression patterns, supporting the hypothesis of a general regulation of inward channel activity by AtKC1 in planta. Lastly, AtKC1 disruption appeared to reduce plant biomass production, showing that AtKC1-mediated channel activity regulation is required for normal plant growth.  相似文献   

4.
Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K+, are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the molecular identity of inward Shaker channels operating therein is not yet completely elucidated. Here, we first addressed the properties of KAT1-KAT2 heteromers by expressing KAT1-KAT2 tandems in Xenopus oocytes. Then, computer analyses of the data suggested that coexpression of free KAT1 and KAT2 subunits resulted mainly in heteromeric channels made of two subunits of each type due to some preferential association of KAT1-KAT2 heterodimers at the first step of channel assembly. This was further supported by the analysis of KAT2 effect on KAT1 targeting in tobacco cells. Finally, patch-clamp recordings of native inward channels in wild-type and mutant genotypes strongly suggested that this preferential heteromerization occurs in planta and that Arabidopsis guard cell inward Shaker channels are mainly heteromers of KAT1 and KAT2 subunits.  相似文献   

5.
6.
Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+in channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell K+in channel, KAT1, which shows enhanced resistance to the Cs+ block. Stomata in these transgenic lines opened in the presence of external Cs+. Patch-clamp experiments with transgenic guard cells showed that inward K+(in) currents were blocked less by Cs+ than were K+ currents in controls. These data provide direct evidence that KAT1 functions as a plasma membrane K+ channel in vivo and that K+in channels constitute an important mechanism for light-induced stomatal opening. In addition, biophysical properties of K+in channels in guard cells indicate that components in addition to KAT1 may contribute to the formation of K+in channels in vivo.  相似文献   

7.
8.
The grape berry provides a model for investigating the physiology of non‐climacteric fruits. Increased K+ accumulation in the berry has a strong negative impact on fruit acidity (and quality). In maturing berries, we identified a K+ channel from the Shaker family, VvK1.2, and two CBL‐interacting protein kinase (CIPK)/calcineurin B‐like calcium sensor (CBL) pairs, VvCIPK04–VvCBL01 and VvCIPK03–VvCBL02, that may control the activity of this channel. VvCBL01 and VvCIPK04 are homologues of Arabidopsis AtCBL1 and AtCIPK23, respectively, which form a complex that controls the activity of the Shaker K+ channel AKT1 in Arabidopsis roots. VvK1.2 remained electrically silent when expressed alone in Xenopus oocytes, but gave rise to K+ currents when co‐expressed with the pairs VvCIPK03–VvCBL02 or VvCIPK04–VvCBL01, the second pair inducing much larger currents than the first one. Other tested CIPK–CBL pairs expressed in maturing berries were found to be unable to activate VvK1.2. When activated by its CIPK–CBL partners, VvK1.2 acts as a voltage‐gated inwardly rectifying K+ channel that is activated at voltages more negative than –100 mV and is stimulated upon external acidification. This channel is specifically expressed in the berry, where it displays a very strong induction at veraison (the inception of ripening) in flesh cells, phloem tissues and perivascular cells surrounding vascular bundles. Its expression in these tissues is further greatly increased upon mild drought stress. VvK1.2 is thus likely to mediate rapid K+ transport in the berry and to contribute to the extensive re‐organization of the translocation pathways and transport mechanisms that occurs at veraison.  相似文献   

9.
Methylglyoxal (MG) is a reactive aldehyde derived by glycolysis. In Arabidopsis, MG inhibited light-induced stomatal opening in a dose-dependent manner. It significantly inhibited both inward-rectifying potassium (K(in)) channels in guard-cell protoplasts and an Arabidopsis K(in) channel, KAT1, heterologously expressed in Xenopus oocytes. Thus it appears that MG inhibition of stomatal opening involves MG inhibition of K(+) influx into guard cells.  相似文献   

10.
Acid-induced potassium uptake through K+ channels is a prerequisite for stomatal opening. Our previous studies identified a pore histidine as a major component of the acid activation mechanism of the potato guard cell K+ channel KST1 (1). Although this histidine is highly conserved among all plant K+ uptake channels cloned so far, the pH-dependent gating of the Arabidopsis thaliana guard cell K+ channel KAT1 was not affected by mutations of this histidine. In both channels, KST1 and KAT1, aspartate mutants in the K+ channel consensus sequence GYGD adjacent to the histidine (KST1-D269N and KAT1-D265N) were inhibited by a rise in the extracellular proton concentration. pH changes affected the half-maximal activation voltage V(1)/(2) of the KST1 mutant, whereas in the mutant channel KAT1-D265N an acid-induced decrease in the maximum conductance gmax indicated the presence of a proton block. In contrast to the wild type KST1, the S4-mutant channel KST1-R181Q exhibited an activation upon alcalization of the extracellular solution. From our electrophysiological studies on channel mutants with respect to the pore histidine as well as the aspartate, we conclude that the common proton-supported shift in the voltage dependence of KST1 and KAT1 is based on distinct molecular elements.  相似文献   

11.
We screened a rice (Oryza sativa L. 'Nipponbare') full-length cDNA expression library through functional complementation in yeast (Saccharomyces cerevisiae) to find novel cation transporters involved in salt tolerance. We found that expression of a cDNA clone, encoding the rice homolog of Shaker family K(+) channel KAT1 (OsKAT1), suppressed the salt-sensitive phenotype of yeast strain G19 (Deltaena1-4), which lacks a major component of Na(+) efflux. It also suppressed a K(+)-transport-defective phenotype of yeast strain CY162 (Deltatrk1Deltatrk2), suggesting the enhancement of K(+) uptake by OsKAT1. By the expression of OsKAT1, the K(+) contents of salt-stressed G19 cells increased during the exponential growth phase. At the linear phase, however, OsKAT1-expressing G19 cells accumulated less Na(+) than nonexpressing cells, but almost the same K(+). The cellular Na(+) to K(+) ratio of OsKAT1-expressing G19 cells remained lower than nonexpressing cells under saline conditions. Rice cells overexpressing OsKAT1 also showed enhanced salt tolerance and increased cellular K(+) content. These functions of OsKAT1 are likely to be common among Shaker K(+) channels because OsAKT1 and Arabidopsis (Arabidopsis thaliana) KAT1 were able to complement the salt-sensitive phenotype of G19 as well as OsKAT1. The expression of OsKAT1 was restricted to internodes and rachides of wild-type rice, whereas other Shaker family genes were expressed in various organs. These results suggest that OsKAT1 is involved in salt tolerance of rice in cooperation with other K(+) channels by participating in maintenance of cytosolic cation homeostasis during salt stress and thus protects cells from Na(+).  相似文献   

12.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

13.
14.
15.
Shaker K+ channels form the major K+ conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K+ channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K+ rectifying channel1 (AtKC1). These two subunits contribute to K+ transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K+) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function.In plants, potassium channels from the Shaker family dominate the plasma membrane (PM) conductance to K+ in most cell types and play crucial roles in sustained K+ transport (Blatt et al., 2012; Hedrich, 2012; Sharma et al., 2013). Plant Shaker channels, like their homologs in animals (Craven and Zagotta, 2006; Wahl-Schott and Biel, 2009), belong to the six transmembrane-one pore (6TM-1P) cation channel superfamily. Functional channels are tetrameric proteins arranged around a central pore (Daram et al., 1997; Urbach et al., 2000; Dreyer et al., 2004). These channels can result from the assembly of Shaker subunits encoded by the same gene (homotetramers) or by different Shaker genes (heterotetramers). Heterotetramerization has been extensively reported within the inwardly rectifying Shaker channel group (five members in Arabidopsis [Arabidopsis thaliana]) and increased channel functional diversity (Jeanguenin et al., 2008; Lebaudy et al., 2008a).Based on in silico sequence analyses, plant Shaker subunits display a short cytosolic N-terminal domain, followed by the 6TM-1P hydrophobic core, and a long C-terminal cytosolic region in which several domains can be identified. The first one, named C-linker (about 80 amino acids in length), is followed by a cyclic nucleotide-binding domain (CNBD), an ankyrin domain (involved in protein-protein interaction; Lee et al., 2007, Grefen and Blatt, 2012), and a domain named KHA (Ehrhardt et al., 1997) rich in hydrophobic and acidic residues. Sequence analysis of plant Shaker channels indicates that, among these cytosolic domains, the highest levels of similarity are displayed by the C-linker and the CNBD domains. Interestingly, both domains are also highly conserved in some members from the animal K+ channel superfamily, like Hyperpolarization-activated, cyclic nucleotide-gated K+ channel (HCN), K+ voltage-gated channel, subfamily H (KCNH), and Cyclic-nucleotide-gated ion channel (CNGC). In these animal 6TM-1P channels, the roles of C-linker and CNBD domains have been extensively investigated via crystal structure analyses (Zagotta et al., 2003; Brelidze et al., 2012), whereas plant Shaker channels are still poorly characterized at the structural level (Dreyer et al., 2004; Gajdanowicz et al., 2009; Naso et al., 2009; Garcia-Mata et al., 2010).Aiming at investigating the structure-function relationship of plant Shaker channels, we have used the Arabidopsis Shaker subunit K+ channel in Arabidopsis thaliana2 (KAT2) as a model. We developed a subdomain-swapping strategy between KAT2 and another Shaker subunit displaying distinctive features, Arabidopsis thaliana K+ rectifying channel1 (AtKC1). The KAT2 subunit can form homomeric or heteromeric inwardly rectifying K+ channels at the PM and has been shown to be strongly expressed in guard cells, where it provides a major contribution to the membrane conductance to K+ (Pilot et al., 2001; Lebaudy et al., 2008b). In contrast, the behavior of AtKC1 is more complex. In planta, this subunit is coexpressed with other inwardly rectifying Shaker subunits, including KAT2, in different plant tissues (Jeanguenin et al., 2011), and in roots, direct evidence has been obtained that AtKC1 is involved in functional heterotetrameric channel formation with AKT1 (Reintanz et al., 2002; Honsbein et al., 2009). However, experiments performed in tobacco (Nicotiana tabacum) mesophyll protoplasts have revealed that when expressed alone, AtKC1 is entrapped in the endoplasmic reticulum (ER). However, in tobacco protoplasts and Xenopus laevis oocytes, coexpression of AtKC1 with KAT2 or other inwardly rectifying Shaker subunits (AKT1, KAT1, or AKT2) gives rise to functional heteromeric channels (Duby et al., 2008; Jeanguenin et al., 2011). In Arabidopsis, it is interesting that evidence of the AtKC1 retention in the ER compartment, in the absence of other Shaker subunits, is lacking, since in the native tissues, AtKC1 is always expressed with its inward partners, with which it is able to form heteromeric channels.Here, we took advantage of the unique behavior of AtKC1 when expressed in heterologous systems to investigate the structure-function relationship of the C-linker of KAT2 by sequence exchange between these two channel subunits and by site-directed mutagenesis. The C-linker domain, which, to our knowledge, had never been studied as such in plant Shaker channels before, could be predicted to play crucial roles in channel properties due to its strategic location between the channel transmembrane core and the cytoplasmic CNBD domain. The resulting KAT2-AtKC1 chimeras were expressed in tobacco mesophyll protoplasts and in X. laevis oocytes for investigating their subcellular localization and measuring their activity at the cell membrane. Here, we show that two amino acids present in the C-linker are important for channel subcellular location and that a stretch of nine amino acids forming a short helix just below the membrane, downstream of the sixth transmembrane segment of the channel hydrophobic core, is involved in channel gating. The obtained experimental results are discussed in relation with a KAT2 C-linker/CNBD three-dimensional (3D) model based on animal HCN channels as structure templates.  相似文献   

16.
Assembly of plant Shaker subunits as heterotetramers, increasing channel functional diversity, has been reported. Here we focus on a new interaction, between AKT2 and KAT2 subunits. The assembly as AKT2/KAT2 heterotetramers is demonstrated by (i) a strong signal in two-hybrid tests with intracytoplasmic C-terminal regions, (ii) the effect of KAT2 on AKT2 subunit targeting in tobacco cells, (iii) the complete inhibition of AKT2 currents by co-expression with a dominant-negative KAT2 subunit in Xenopus oocytes, and reciprocally, and (iv) the appearance, upon co-expression of wild-type AKT2 and KAT2 subunits, of new channel functional properties that cannot be explained by the co-existence of two kinds of homotetrameric channels. In particular, the instantaneous current, characteristic of AKT2, displayed new functional features when compared with those of AKT2 homotetramers: activation by external acidification (instead of inhibition) and weak inhibition by calcium. Single channel current measurements in oocytes co-expressing AKT2 and KAT2 revealed a strong preference for incorporation of subunits into heteromultimers and a diversity of individual channels. In planta, these new channels, which may undergo specific regulations, are likely to be formed in guard cells and in the phloem, where they could participate in the control of membrane potential and potassium fluxes.  相似文献   

17.
18.
Inward-rectifying potassium (K+(in)) channels in guard cells have been suggested to provide a pathway for K+ uptake into guard cells during stomatal opening. To test the proposed role of guard cell K+(in) channels in light-induced stomatal opening, transgenic Arabidopsis plants were generated that expressed dominant negative point mutations in the K+(in) channel subunit KAT1. Patch-clamp analyses with transgenic guard cells from independent lines showed that K+(in) current magnitudes were reduced by approximately 75% compared with vector-transformed controls at -180 mV, which resulted in reduction in light-induced stomatal opening by 38% to 45% compared with vector-transformed controls. Analyses of intracellular K+ content using both sodium hexanitrocobaltate (III) and elemental x-ray microanalyses showed that light-induced K+ uptake was also significantly reduced in guard cells of K+(in) channel depressor lines. These findings support the model that K+(in) channels contribute to K+ uptake during light-induced stomatal opening. Furthermore, transpirational water loss from leaves was reduced in the K+(in) channel depressor lines. Comparisons of guard cell K+(in) current magnitudes among four different transgenic lines with different K+(in) current magnitudes show the range of activities of K+(in) channels required for guard cell K+ uptake during light-induced stomatal opening.  相似文献   

19.
Trafficking of K+ inward (Kin+) rectifying channels was analyzed in guard cells of Vicia faba transfected with the Kin+ rectifier from Arabidopsis thaliana KAT1 fused to the green fluorescent protein (GFP). Confocal images and whole-cell patch-clamp measurements confirmed the incorporation of active KAT1 channels into the plasma membrane of transfected guard cell protoplasts. The Kin+ rectifier current density of the plasma membrane was much larger in transfected protoplasts than in wild-type (wt) protoplasts. This shows a coupling between K+ channel synthesis and incorporation of the channel into the plasma membrane. Pressure-driven increase and decrease in surface area led to the incorporation and removal of vesicular membrane carrying active Kin+ rectifier in wt and transfected protoplasts. These vesicular membranes revealed a higher channel density than the plasma membrane, suggesting that Kin+ rectifier remains in clusters during trafficking to and from the plasma membrane. The observed results can be explained by a model illustrating that vesicles of a pre-plasma membrane pool carry K+ channels preferentially in clusters during constitutive and pressure-driven exo- and endocytosis.  相似文献   

20.
The inward-rectifying K+ channel KAT1 is expressed mainly in Arabidopsis thaliana guard cells. The purification of functional KAT1 has never been reported. We investigated the extraction of the plant K+ channel KAT1 with different detergents, as an example for how to select detergents for purifying a eukaryotic membrane protein. A KAT1-GFP fusion protein was used to screen a library of 46 detergents for the effective solubilization of intact KAT1. Then, a “test set” of three detergents was picked for further analysis, based on their biochemical characteristics and availability. The combination use of the selected detergents enabled the effective purification of functional KAT1 with affinity and gel-filtration chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号