首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our goal was to gain a better understanding of how protein stability can be increased by improving β‐turns. We studied 22 β‐turns in nine proteins with 66–370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some β‐turn positions. We studied: Cold shock protein B (CspB), Histidine‐containing phosphocarrier protein, Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase α‐subunit, and Maltose binding protein. Of the 15 single proline mutations, 11 increased stability (Average = 0.8 ± 0.3; Range = 0.3–1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. On the basis of this and our previous work, we conclude that proteins can generally be stabilized by replacing nonproline residues with proline residues at the i + 1 position of Type I and II β‐turns and at the i position in Type II β‐turns. Other turn positions can sometimes be used if the φ angle is near ?60° for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in β‐turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in β‐turns that could be replaced by Gly to increase protein stability. Improving β‐turns by substituting Pro residues is a generally useful way of increasing protein stability. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Local water bridges and protein conformational stability.   总被引:3,自引:0,他引:3       下载免费PDF全文
Recent studies have pointed out the important role of local water structures in protein conformational stability. Here, we present an accurate and computationally effective way to estimate the free energy contribution of the simplest water structure motif--the water bridge. Based on the combination of empirical parameters for accessible protein surface area and the explicit consideration of all possible water bridges with the protein, we introduce an improved protein solvation model. We find that accounting for water bridge formation in our model is essential to understand the conformational behavior of polypeptides in water. The model formulation, in fact, does not depend on the polypeptide nature of the solute and is therefore applicable to other flexible biomolecules (i.e., DNAs, RNAs, polysaccharides, etc.).  相似文献   

3.
A multi-site, time-resolved fluorescence resonance energy transfer methodology has been used to study structural heterogeneity in a late folding intermediate ensemble, IL, of the small protein barstar. Four different intra-molecular distances have been measured within the structural components of IL. The IL ensemble is shown to consist of different sub-populations of molecules, in each of which one or more of the four distances are native-like and the remaining distances are unfolded-like. In very stable conditions that favor formation of IL, all four distances are native-like in most molecules. In less stable conditions, one or more distances are unfolded-like. As stability is decreased, the proportion of molecules with unfolded-like distances increases. Thus, the results show that protein folding intermediates are ensembles of different structural forms, and they demonstrate that conformational entropy increases as structures become less stable. These observations provide direct experimental evidence in support of a basic tenet of energy landscape theory for protein folding, that available conformational space, as represented by structural heterogeneity in IL, becomes restricted as the stability is increased. The results also vindicate an important prediction of energy landscape theory, that different folding pathways may become dominant under different folding conditions. In more stable folding conditions, uniformly native-like compactness is achieved during folding to IL, whereas in less stable conditions, uniformly native-like compactness is achieved only later during the folding of IL to N.  相似文献   

4.
Side-chain conformational entropy in protein folding.   总被引:3,自引:11,他引:3       下载免费PDF全文
An important, but often neglected, contribution to the thermodynamics of protein folding is the loss of entropy that results from restricting the number of accessible side-chain conformers in the native structure. Conformational entropy changes can be found by comparing the number of accessible rotamers in the unfolded and folded states, or by estimating fusion entropies. Comparison of several sets of results using different techniques shows that the mean conformational free energy change (T delta S) is 1 kcal.mol-1 per side chain or 0.5 kcal.mol-1 per bond. Changes in vibrational entropy appear to be negligible compared to the entropy change resulting from the loss of accessible rotamers. Side-chain entropies can help rationalize alpha-helix propensities, predict protein/inhibitor complex structures, and account for the distribution of side chains on the protein surface or interior.  相似文献   

5.
The purpose of this study was to investigate the stabilizing action of polyols against various protein degradation mechanisms (eg, aggregation, deamidation, oxidation), using a model protein lysozyme. Differential scanning calorimeter (DSC) was used to measure the thermodynamic parameters, mid point transition temperature and calorimetric enthalpy, in order to evaluate conformational stability. Enzyme activity assay was used to corroborate the DSC results. Mannitol, sucrose, lactose, glycerol, and propylene glycol were used as polyols to stabilize lysozyme against aggregation, deamidation, and oxidation. Mannitol was found to stabilize lysozyme against aggregation, sucrose against deamidation both at neutral pH and at acidic pH, and lactose against oxidation. Stabilizers that provided greater conformational stability of lysozyme against various degradation mechanisms also protected specific enzyme activity to a greater extent. It was concluded that DSC and bioassay could be valuable tools for screening stabilizers in protein formulations.  相似文献   

6.
The family of conserved colicin DNases E2, E7, E8, and E9 are microbial toxins that kill bacteria through random degradation of the chromosomal DNA. In the present work, we compare side by side the conformational stabilities of these four highly homologous colicin DNases. Our results indicate that the apo-forms of these colicins are at room temperature and neutral pH in a dynamic conformational equilibrium between at least two quite distinct conformers. We show that the thermal stabilities of the apo-proteins differ by up to 20 degrees C. The observed differences correlate with the observed conformational behavior, that is, the tendency of the protein to form either an open, less stable or closed, more stable conformation in solution, as deduced by both tryptophan accessibility studies and electrospray ionization mass spectrometry. Given these surprising structural differences, we next probed the catalytic activity of the four DNases and also observed a significant variation in relative activities. However, no unequivocal link between the activity of the protein and its thermal and structural stability could easily be made. The observed differences in conformational and functional properties of the four colicin DNases are surprising given that they are a closely related (> or =65% identity) family of enzymes containing a highly conserved (betabetaalpha-Me) active site motif. The different behavior of the apo-enzymes must therefore most likely depend on more subtle changes in amino acid sequences, most likely in the exosite region (residues 72-98) that is required for specific high-affinity binding of the cognate immunity protein.  相似文献   

7.
It is difficult to increase protein stability by adding hydrogen bonds or burying nonpolar surface. The results described here show that reversing the charge on a side chain on the surface of a protein is a useful way of increasing stability. Ribonuclease T1 is an acidic protein with a pI approximately 3.5 and a net charge of approximately -6 at pH 7. The side chain of Asp49 is hyperexposed, not hydrogen bonded, and 8 A from the nearest charged group. The stability of Asp49Ala is 0.5 kcal/mol greater than wild-type at pH 7 and 0.4 kcal/mol less at pH 2.5. The stability of Asp49His is 1.1 kcal/mol greater than wild-type at pH 6, where the histidine 49 side chain (pKa = 7.2) is positively charged. Similar results were obtained with ribonuclease Sa where Asp25Lys is 0.9 kcal/mol and Glu74Lys is 1.1 kcal/mol more stable than the wild-type enzyme. These results suggest that protein stability can be increased by improving the coulombic interactions among charged groups on the protein surface. In addition, the stability of RNase T1 decreases as more hydrophobic aromatic residues are substituted for Ala49, indicating a reverse hydrophobic effect.  相似文献   

8.
The three-dimensional structure of protein is encoded in the sequence, but many amino acid residues carry no essential conformational information, and the identity of those that are structure-determining is elusive. By circular permutation and terminal deletion, we produced and purified 25 Bacillus licheniformis beta-lactamase (ESBL) variants that lack 5-21 contiguous residues each, and collectively have 82% of the sequence and 92% of the non-local atom-atom contacts eliminated. Circular dichroism and size-exclusion chromatography showed that most of the variants form conformationally heterogeneous mixtures, but by measuring catalytic constants, we found that all populate, to a greater or lesser extent, conformations with the essential features of the native fold. This suggests that no segment of the ESBL sequence is essential to the structure as a whole, which is congruent with the notion that local information and modular organization can impart most of the tertiary fold specificity and cooperativity.  相似文献   

9.
An important goal of protein design is to understand the forces that stabilize a particular fold in preference to alternative folds. Here, we describe an extension of earlier studies in which we successfully designed a stable, native-like helical protein that is 50% identical in sequence to a predominantly beta-sheet protein, the B1 domain of Streptococcal IgG-binding protein G. We report the characteristics of a series of variants of our original design that have even higher sequence identity to the B1 domain. Their properties illustrate the extent to which protein stability and conformation can be modulated through careful manipulation of key amino acid residues. Our results have implications for understanding conformational change phenomena of central biological importance and in probing the malleability of the sequence/structure relationship.  相似文献   

10.
The conformational stability of the histidine-containing phosphocarrier protein (HPr) from Bacillus subtilis has been determined using a combination of thermal unfolding and solvent denaturation experiments. The urea-induced denaturation of HPr was monitored spectroscopically at fixed temperatures and thermal unfolding was performed in the presence of fixed concentrations of urea. These data were analyzed in several different ways to afford a measure of the cardinal parameters (delta Hg, Tg, delta Sg, and delta Cp) that describe the thermodynamics of folding for HPr. The method of Pace and Laurents (Pace CN, Laurents DV, 1989, Biochemistry 28:2520-2525) was used to estimate delta Cp as was a global analysis of the thermal- and urea-induced unfolding data. Each method used to analyze the data gives a similar value for delta Cp (1,170 +/- 50 cal mol-1K-1). Despite the high melting temperature for HPr (Tg = 73.5 degrees C), the maximum stability of the protein, which occurs at 26 degrees C, is quite modest (delta Gs = 4.2 kcal mol-1). In the presence of moderate concentrations of urea, HPr exhibits cold denaturation, and thus a complete stability curve for HPr, including a measure of delta Cp, can be achieved using the method of Chen and Schellman (Chen B, Schellman JA, 1989, Biochemistry 28:685-691). A comparison of the different methods for the analysis of solvent denaturation curves is provided and the effects of urea on the thermal stability of this small globular protein are discussed. The methods presented will be of general utility in the characterization of the stability curve for many small proteins.  相似文献   

11.
Structure and stability of the P93G variant of ribonuclease A.   总被引:3,自引:3,他引:0       下载免费PDF全文
The peptide bonds preceding Pro 93 and Pro 114 of bovine pancreatic ribonuclease A (RNase A) are in the cis conformation. The trans-to-cis isomerization of these bonds had been indicted as the slow step during protein folding. Here, site-directed mutagenesis was used to replace Pro 93 or Pro 114 with a glycine residue, and the crystalline structure of the P93G variant was determined by X-ray diffraction analysis to a resolution of 1.7 A. This structure is essentially identical to that of the wild-type protein, except for the 91-94 beta-turn containing the substitution. In the wild-type protein, the beta-turn is of type VIa. In the P93G variant, this turn is of type II with the peptide bond preceding Gly 93 being trans. The thermal stabilities of the P93G and P114G variants were assessed by differential scanning calorimetry and thermal denaturation experiments monitored by ultraviolet spectroscopy. The value of delta deltaGm which reports on the stability lost in the variants, is 1.5-fold greater for the P114G variant than for the P93G variant. The greater stability of the P93G variant is likely due to the relatively facile accommodation of residues 91-94 in a type II turn, which has a preference for a glycine residue in its i + 2 position.  相似文献   

12.
The mechanism of beta-sheet formation remains a fundamental issue in our understanding of the protein folding process, but is hampered by the often encountered kinetic competition between folding and aggregation. The role of local versus nonlocal interactions has been probed traditionally by mutagenesis of both turn and strand residues. Recently, rigid organic molecules that impose a correct chain reversal have been introduced in several small peptides to isolate the importance of the long-range interactions. Here, we present the incorporation of a well-studied beta-turn mimic, designated as the dibenzofuran-based (DBF) amino acid, in the B1 domain of streptococcal protein G (B1G), and compare our results with those obtained upon insertion of the same mimic into the N-terminal beta-hairpin of B1G (O Melnyk et al., 1998, Lett Pept Sci 5:147-150). The DBF-B1G domain conserves the structure and the functional and thermodynamical properties of the native protein, whereas the modified peptide does not adopt a native-like conformation. The nature of the DBF flanking residues in the modified B1G domain prevents the beta-turn mimic from acting as a strong beta-sheet nucleator, which reinforces the idea that the native beta-hairpin formation is not driven by the beta-turn formation, but by tertiary interactions.  相似文献   

13.
14.
This study shows that a combination of sequence homology and structural information can be used to increase the stability of the WW domain by 2.5 kcal mol(-1) and increase the T(m) by 28 degrees C. Previous homology-based protein design efforts typically investigate positions with low sequence identity, whereas this study focuses on semi-conserved core residues and proximal residues, exploring their role(s) in mediating stabilizing interactions on the basis of structural considerations. The A20R and L30Y mutations allow increased hydrophobic interactions because of complimentary surfaces and an electrostatic interaction with a third residue adjacent to the ligand-binding hydrophobic cluster, increasing stability significantly beyond what additivity would predict for the single mutations. The D34T mutation situated in a pi-turn possibly disengages Asn31, allowing it to make up to three hydrogen bonds with the backbone in strand 1 and loop 2. The synergistic mutations A20R/L30Y in combination with the remotely located mutation D34T add together to create a hYap WW domain that is significantly more stable than any of the protein structures on which the design was based (Pin and FBP28 WW domains).  相似文献   

15.
16.
17.
Ceruso MA  Grottesi A  Di Nola A 《Proteins》2003,50(2):222-229
In this work, we investigated the structural and dynamic consequences of two substitutions, P58A and G36P, located in two different solvent-exposed loops of cytochrome c551. The results show that both mutations affect regions that are distant from the site of mutation. Here, the two loops appear to be dynamically coupled to each other, because the substitution at one site affects the structure and the dynamics of the other site. However, the substitutions at Gly-36 and Pro-58 presented substantial differences, which were related to the mechanical (rigidity and deformability) properties of the site surrounding the mutation. Although the P58A mutant conserved a significant dynamic similarity to the wild-type protein as the immediate surroundings of position 58 became more rigid, the G36P mutant, which had deformed its flexible surroundings, presented a dynamic behavior that was markedly different from that of the wild-type protein. These results suggest that perturbation of sterically isolated and flexible regions, such as solvent-exposed loops, can have strong dynamic consequences on the protein as a whole, raising the possibility that these effects could in turn affect the stability or the function of the protein.  相似文献   

18.
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   

19.
20.
Previous equilibrium and kinetic folding studies of the glycoprotein erythropoietin indicate that sodium chloride increases the conformational stability of this therapeutically important cytokine, ostensibly by stabilizing the native-state [Banks DD, (2011) The Effect of Glycosylation on the Folding Kinetics of Erythropoietin. J Mol Biol 412:536–550]. The focus of the current report is to determine the underlying cause of the salt dependent increase in erythropoietin conformational stability and to understand if it has any impact on aggregation, an instability that remains a challenge to the biotech industry in maintaining the efficacy and shelf-life of protein therapeutics. Isothermal urea denaturation experiments conducted at numerous temperatures in the absence and presence of sodium chloride indicated that salt stabilizes erythropoietin primarily by increasing the difference in enthalpy between the native and unfolded sates. This result, and the finding that the salt induced increases in erythropoietin melting temperatures were independent of the identity of the salt cation and anion, indicates that salt likely increases the conformational stability of erythropoietin at neutral pH by nonspecific shielding of unfavorable electrostatic interaction(s) in the native-state. The addition of salt (even low concentrations of the strong chaotrope salt guanidinium hydrochloride) also exponentially decreased the initial rate of soluble erythropoietin non-native aggregation at 37 °C storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号