首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the domestication of rice (Oryza sativa L.), diversification of flowering time was important in expanding the areas of cultivation. Rice is a facultative short day (SD) plant and requires certain periods of dark to induce flowering. Heading date 1 (Hd1), a regulator of the florigen gene Hd3a, is one of the main factors used to generate diversity in flowering. Loss-of-function alleles of Hd1 are common in cultivated rice and cause the diversity of flowering time. However, it is unclear how these functional nucleotide polymorphisms of Hd1 accumulated in the course of evolution. Nucleotide polymorphisms within Hd1 and Hd3a were analyzed in 38 accessions of ancestral wild rice Oryza rufipogon and compared with those of cultivated rice. In contrast to cultivated rice, no nucleotide changes affecting Hd1 function were found in 38 accessions of wild rice ancestors. No functional changes were found in Hd3a in either cultivated or ancestral rice. A phylogenetic analysis indicated that evolution of the Hd1 alleles may have occurred independently in cultivars descended from various accessions of ancestral rice. The non-functional Hd1 alleles found in cultivated rice may be selected during domestication, because they were not found or very rare in wild ancestral rice. In contrast with Hd3a, which has been highly conserved, Hd1 may have undergone human selection to diversify the flowering times of rice during domestication or the early stage of the cultivation period.  相似文献   

2.
3.
4.
5.
To understand the genetic characteristics of the traits related to differentiation between cultivated rice and its wild progenitor, genetic factors controlling domestication- and yield-related traits were identified using a BC3F2 population derived from an accession of common wild rice (donor, Oryza rufipogon Griff.) collected from Yuanjiang, Yunnan province, China, and an indica cultivar, Teqing (recipient, Oryza sativa L.). A genetic linkage map consisting of 125 simple sequence repeat (SSR) markers was constructed. Based on the phenotypes of the 383 BC3F2 families evaluated in two environments, two domestication-related morphological traits, panicle shape and growth habit, were found to be controlled by single Mendelian factors. This implies that the recessive mutations of single genes controlling some morphological traits could have been easily selected during early domestication. By single-point analysis and interval mapping, 59 putative quantitative trait loci (QTLs) that influence 11 quantitative traits were detected at two sites, and 37.5% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield-related traits in the Teqing background. Regions with significant QTLs for domestication- and yield-related traits were detected on chromosomes 1, 4, 5, 7, 8, and 12. Fine mapping and cloning of these domestication-related genes and QTLs will be useful in elucidating the origin and differentiation of Asian cultivated rice in the future.  相似文献   

6.
In rice (Oryza sativa L.), there is a diversity in flowering time that is strictly genetically regulated. Some indica cultivars show extremely late flowering under long-day conditions, but little is known about the gene(s) involved. Here, we demonstrate that functional defects in the florigen gene RFT1 are the main cause of late flowering in an indica cultivar, Nona Bokra. Mapping and complementation studies revealed that sequence polymorphisms in the RFT1 regulatory and coding regions are likely to cause late flowering under long-day conditions. We detected polymorphisms in the promoter region that lead to reduced expression levels of RFT1. We also identified an amino acid substitution (E105K) that leads to a functional defect in Nona Bokra RFT1. Sequencing of the RFT1 region in rice accessions from a global collection showed that the E105K mutation is found only in indica, and indicated a strong association between the RFT1 haplotype and extremely late flowering in a functional Hd1 background. Furthermore, SNPs in the regulatory region of RFT1 and the E105K substitution in 1,397 accessions show strong linkage disequilibrium with a flowering time–associated SNP. Although the defective E105K allele of RFT1 (but not of another florigen gene, Hd3a) is found in many cultivars, relative rate tests revealed no evidence for differential rate of evolution of these genes. The ratios of nonsynonymous to synonymous substitutions suggest that the E105K mutation resulting in the defect in RFT1 occurred relatively recently. These findings indicate that natural mutations in RFT1 provide flowering time divergence under long-day conditions.  相似文献   

7.
Heading date is a key trait in rice domestication and adaption, and a number of quantitative trait loci (QTLs) have been identified. The rice (Oryza sativa L.) cultivars in the Heilongjiang Province, t...  相似文献   

8.
9.
10.
11.
Li S  Yang G  Li S  Li Y  Chen Z  Zhu Y 《Annals of botany》2005,96(3):461-466
BACKGROUND AND AIMS: Rice (Oryza sativa) is one of the most important cereal plants in the world. Wild-abortive (WA) and Honglian (HL) cytoplasmic male sterility (CMS) have been used extensively in the production of hybrid seeds. Although a variable number of fertility-restorer genes (Rf) for WA and HL-CMS have been identified in various cultivars, information on Rf in Oryza species with the AA-genome is sparse. Therefore the distribution and heredity of Rf for WA and HL-CMS in wild rice species of Oryza with the AA-genome were investigated. METHODS: Fertility-restorer genes for WA and HL-CMS in wild rice species with the AA-genome were investigated by following the fertility of microspores identified by I2-KI staining and by following the seed-setting rate of spikelets. A genetic model of Rf in some selected restorer accessions was analysed based on the fertility segregation of BC1F1 populations. KEY RESULTS: Fertility analysis showed that 21 out of 35 HL-type F1s, and 13 out of 31 WA-type F1s were scored as fertile. The frequency of Rf in wild rice was 60% for HL-CMS and 41.9% for WA-CMS, respectively. The fertility-restorer accessions, especially those with complete restoring ability, aggregated mainly in two species of O. rufipogon and O. nivara. The wild rice accessions with Rf for HL-CMS were distributed in Asia, Oceania, Latin American and Africa, but were centered mainly in Asia, whilst the wild restorer accessions for WA-CMS were limited only to Asia and Africa. Apart from one restorer accession that possessed two pairs of Rf for WA-CMS, all of the other nine tested wild restorer accessions each contained only a single Rf for WA-CMS or HL-CMS. Allele analysis indicated that there existed at least three Rf loci for the WA and HL-CMS systems. CONCLUSIONS: These data support the hypothesis that fertility-restorer genes exist widely in Oryza species with the AA-genome, and that Rf in Oryza sativa originated from the Oryza rufipogon/Oryza nivara complex, the ancestor of cultivated rice in Asia. The origin and evolution of Rf is tightly linked to that of CMS in wild rice, and fertility of a given CMS type is controlled by several Rf alleles in various wild restorer accessions.  相似文献   

12.
13.
江西东乡野生稻苗期抗旱基因定位   总被引:2,自引:0,他引:2  
普通野生稻是栽培稻的祖先种,其遗传多样性远远大于栽培稻,蕴涵着栽培品种中难以找到的重要性状.以江西东乡普通野生稻为供体、以桂朝2号为遗传背景的野生稻基因渗入系(BC4F5、BC4F6)为材料,利用30%的PEG人工模拟干旱环境,对渗入系二叶一心苗期进行抗旱鉴定,共定位了12个与抗旱有关的QTL,其中在第2、6和12染色体上发现了4个QTL的加性效应值为正,来自东乡野生稻的等位基因能使渗入系的抗旱性增强,特别是位于第12染色体RM17附近的qSDT12-2在多次重复中均被检测到,在PEG处理后1-8 d能稳定表达.通过对抗旱性QTL的动态分析,发现不同QTL表达时间不同.  相似文献   

14.
Quantitative trait loci (QTL) were identified for heading date and plant height in rice ( Oryza sativa L.) using a recombinant inbred line population consisting of 241 lines. Totally 4 QTLs for heading date and 4 QTLs for plant height were detected in three years. The QTL with large effects located in the interval C1023-R1440 on chromosome 7 was simultaneously detected in three years for both traits. In order to distinguished the interval whether contained one QTL with pleiotropy effect or two close linked QTLs, a recombinant line RIL50, whose genetic background was high similar to Zhenshan 97 except the regions covered the major QTL from Minghui 63, was selected to cross with Zhenshan 97. A BC1F2 population from the cross, which could be regarded as near isogenic lines (NIL) with the targeted QTL (QTL-NIL), was used to collect heading date and plant height data. The frequency distribution of the two traits in the BC1F2 population was bimodal, and their segregation ratios were in accordance with the expected Mendelian inheritance ratios. Normally, the short plants flowered early in the population, the high plants with late heading date, but the relationships between the plant height and the heading date of 6 plants conflicted with the case. The above results clearly demonstrated that QTL could be treated as single Mendelian factor. Moreover, there are two close linked genes controlling the heading date and the plant height on chromosome 7, respectively.  相似文献   

15.
A small family of plant proteins, designated PSEUDO RESPONSE REGULATORS (PRRs), is crucial for a better understanding of the molecular link between circadian rhythm and photoperiodic control of flowering time in the dicotyledonous model plant Arabidopsis thaliana. Recently, we showed that the monocotyledonous model plant Oryza sativa also has homologous members of the OsPRR family (Oryza sativa PRR). In the previous experiments with rice, we mainly characterized a japonica variety (Nipponbare). By employing an indica variety (Kasalath), in this study we further characterized OsPRRs with reference to the photoperiod sensitivity Hd (Heading date) QTL (quantitative trait loci) implicated in the control of flowering time in rice. The circadian-controlled and sequential expression profiles of the five OsPRR genes were observed not only for Nipponbare but also for Kasalath. Then each of these OsPRR genes was mapped on the rice chromosomes. Among these OsPRR genes, OsPRR37 was mapped very closely to Hd2-QTL, which was identified as the major locus that enhances the photoperiod sensitivity of flowering in Nipponbare. Furthermore, we found that Kasalath has a severe mutational lesion in the OsPRR37 coding sequence.  相似文献   

16.
Although flowering time is often associated with plant size, little is known about how flowering time genes affect plant architecture. We grew four rice lines having different flowering time genotypes (hd1 ehd1, hd1 Ehd1, Hd1 ehd1 and Hd1 Ehd1) under distinct photoperiod conditions. By using genotype-treatment combinations that resulted in similar flowering times, we were able to compare the effects of flowering time genes on traits related to plant architecture. The results revealed that the combination of Heading-date 1 (Hd1) and Early heading date 1 (Ehd1) can reduce the number of primary branches in a panicle, resulting in smaller spikelet numbers per panicle; this occurs independently of the control of flowering time. In addition, expression of the Hd3a and Rice Flowering-locus T 1 (RFT1) florigen genes was up-regulated in leaves of the Hd1 Ehd1 line at the time of the floral transition. We further revealed that Hd1 and/or Ehd1 caused up-regulation of Terminal Flower 1-like genes and precocious expression of panicle formation-related genes at shoot apical meristems during panicle development. Therefore, two key flowering time genes, Hd1 and Ehd1, can control panicle development in rice; this may affect crop yields in the field through florigen expression in leaf.  相似文献   

17.
The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare)   总被引:7,自引:0,他引:7  
Faure S  Higgins J  Turner A  Laurie DA 《Genetics》2007,176(1):599-609
The FLOWERING LOCUS T (FT) gene plays a central role in integrating flowering signals in Arabidopsis because its expression is regulated antagonistically by the photoperiod and vernalization pathways. FT belongs to a family of six genes characterized by a phosphatidylethanolamine-binding protein (PEBP) domain. In rice (Oryza sativa), 19 PEBP genes were previously described, 13 of which are FT-like genes. Five FT-like genes were found in barley (Hordeum vulgare). HvFT1, HvFT2, HvFT3, and HvFT4 were highly homologous to OsFTL2 (the Hd3a QTL), OsFTL1, OsFTL10, and OsFTL12, respectively, and this relationship was supported by comparative mapping. No rice equivalent was found for HvFT5. HvFT1 was highly expressed under long-day (inductive) conditions at the time of the morphological switch of the shoot apex from vegetative to reproductive growth. HvFT2 and HvFT4 were expressed later in development. HvFT1 was therefore identified as the main barley FT-like gene involved in the switch to flowering. Mapping of HvFT genes suggests that they provide important sources of flowering-time variation in barley. HvFTI was a candidate for VRN-H3, a dominant mutation giving precocious flowering, while HvFT3 was a candidate for Ppd-H2, a major QTL affecting flowering time in short days.  相似文献   

18.
19.
Leveraging natural diversity: back through the bottleneck   总被引:3,自引:0,他引:3  
Plant breeders have long recognized the existence of useful genetic variation in the wild ancestors of our domesticated crop species. In cultivated rice (Oryza sativa), crosses between high-yielding elite cultivars and low-yielding wild accessions often give rise to superior offspring, with wild alleles conferring increased performance in the context of the elite cultivar genetic background. Because the breeding value of wild germplasm cannot be determined by examining the performance of wild accessions, a phylogenetic approach is recommended to determine which interspecific combinations are most likely to be useful in a breeding program. As we deepen our understanding of how genetic diversity is partitioned within and between cultivated and wild gene pools of Oryza, breeders will have increased power to make predictions about the most efficient strategies for utilizing wild germplasm for rice improvement.  相似文献   

20.
张玉山  吴薇  徐才国 《遗传》2008,30(6):781-787
水稻每穗颖花数是水稻产量的重要构成因子之一。适当的抽穗期和株高对水稻高产是非常必要的。依据珍汕97和HR5衍生的重组自交系初步定位的结果, 利用高世代回交的方法构建了第7染色体同时控制抽穗期、株高和每穗颖花数的靶区段近等基因系(BC4F2); 利用基于重组自交系群体的杂合区段自交的方法构建了第8染色体同时控制抽穗期、株高和每穗颖花数的靶区段近等基因系, 并利用两个近等基因系对这两个多效区段的遗传效应进行了准确的评价。两个近等基因系的QTL分析结果表明, 3个性状都是由一个QTL或紧密连锁的QTL控制, 而且加性效应和显性效应的方向均相同; 同时3个性状在各自的近等基因系中呈现典型的双峰分布或不连续分布,这些结果暗示3个性状可能是一因多效的结果。文章还对抽穗期和株高与水稻产量的关系、3个性状显著正相关在育种中的应用及两种构建近等基因系方法的优缺点也进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号