首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to examine the relationships between muscle power output using the stretch-shortening cycle (SSC) and eccentric maximum strength under elbow flexion. Eighteen young adult males pulled up a constant light load (2 kg) by ballistic elbow flexion under the following two preliminary conditions: 1) the static relaxed muscle state (SR condition), and 2) using the SSC with countermovement (SSC condition).Muscle power was determined from the product of the pulling velocity and the load mass by a power measurement instrument that adopted the weight-loading method. We assumed the pulling velocity to be the subject's muscle power parameters as a matter of convenience, because we used a constant load. The following two parameters were selected in reference to a previous study: 1) peak velocity (m x s(-1)) (peak power) and 2) 0.1-second velocity during concentric contraction (m x s(-1)) (initial power). Eccentric maximum strength by elbow flexion was measured by a handheld dynamometer.Initial power produced in the SSC condition was significantly larger than that in the SR condition. Eccentric maximum strength showed a significant and high correlation (r = 0.70) with peak power in the SSC condition but not in the SR condition. Eccentric maximum strength showed insignificant correlations with initial power in both conditions. In conclusion, it was suggested that eccentric maximum strength is associated with peak power in the SSC condition, but the contribution of the eccentric maximum strength to the SSC potentiation (initial power) may be low.  相似文献   

2.
This study was designed to investigate the effect of mechanical vibration on acute power output in the bench press exercise. Ten male subjects who were experienced in resistance training participated in this study. Each subject performed 3 sets of 3 repetitions in the bench press exercise using a load equal to 70% of 1 repetition maximum in each of 2 sessions separated by 3 days. One session served as the experimental (vibration) condition, whereas the other session served as the control (no vibration) condition. The intervention (vibration or control) was applied between sets 2 and 3. The vibration was applied by a vibrating barbell apparatus held by the subjects while lying supine on a bench. The only difference between the 2 conditions was the vibration of the barbell apparatus during the vibration condition. Peak and average power were calculated during each bench press set to determine whether power output differed following vibration compared to control. Average power was significantly higher for the vibration condition compared to the control (525 +/- 74 vs. 499 +/- 71 W; p = 0.01). There was also a trend toward an increase in peak power in the vibration condition (846 +/- 168 by vs. 799 +/- 149 W; p = 0.06). In general, peak and average power output were higher following the vibration intervention compared to control. However, the sets prior to vibration application during the vibration condition also demonstrated higher power outputs compared with the control condition, which contributed to the main effect for the vibration condition. These results suggest that factors other than the vibration intervention influenced task performance during the vibration condition. We suggest that psychological factors related to the novelty of the vibration intervention were involved. These factors may partially explain the conflicting results of previous investigations that examined vibration as an exercise intervention.  相似文献   

3.
The purpose of the experiment was to examine how force, speed and power output of horizontal pulling with the upper limb was affected by the height of pull. Fourteen seated male subjects made horizontal pulls with maximal effort at eye, shoulder and elbow level from their positions of full reach when the trunk and shoulder girdle were rigidly constrained. Dynamic pulls were performed against a water-filled viscous dynamometer in which the resistance, proportional to the square of the velocity, could be varied. The height of pull had no significant effect on either static or dynamic performance. A force-velocity-position surface is presented which describes the conditions at the handle during the pulls. It confirms the importance of degree of reach upon the dynamic performance, and over a greater range of velocities than has been studied previously. A simple model shows that the similarity of performance at eye, shoulder and elbow heights is remarkable because they occur under very different biomechanical circumstances. The total work done in a complete pull increases with resistance. Peak power output is obtained against the same resistance (50 kg m-1) that was reported for elbow flexion and standing pulls.  相似文献   

4.
The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue.  相似文献   

5.
The purposes of this study were to determine the validity and test-retest reliability of the 1 repetition maximum (1RM) chain-loaded, free-weight bench press (CBP) and to examine possible learning effects that may occur between the test-retest measurements. Nine resistance-trained men (20.58 +/- 1.31 years, 188.24 +/- 9.29 cm, 92.07 +/- 16.94 kg) and seven resistance-trained women (20.42 +/- 0.98 years, 175.61 +/- 9.32 cm, 73.61 +/- 10.80 kg) participating in Division II college basketball completed this study. Two familiarization sessions took place using light to moderate loads to learn proper technique. The subjects completed a 1RM test on the traditional plate-loaded bench press 4 days before completion of the CBP 1RM, which was followed by 4 days of rest before completing the retest. Intraclass correlation coefficients (ICC) and the percent coefficients of variation (CV) were used to determine relative and absolute test-retest reliability. Concurrent validity was determined from the Pearson correlation coefficients between the CBP and the plate-loaded bench press. Test-retest differences were analyzed with the paired t-test. ICC and CV for the men (r = 0.99, 1.4%) and women (r = 0.93, 3.5%), respectively indicate that highly reproducible 1RM scores can be found with the CBP. High validity was also found with high correlations between the CBP and plate-loaded bench press for the men (r = 0.95) and women (r = 0.80). A statistically significant (p = 0.04) but clinically small (2.57 kg) shift in the mean occurred between the CBP test and retest for the men, whereas no change occurred for the women. The data indicate that valid and reliable 1RM scores can be found after two familiarization sessions in men and women athletes who have previous resistance training experience.  相似文献   

6.
The purpose of the study was to determine the accuracy of 11 prediction equations in estimating the 1 repetition maximum (1 RM) bench press from repetitions completed by collegiate football players (N = 69) using 225 lb. The demographic variables race, age, height, weight, fat-free weight, and percent body fat were measured to determine whether these variables increased the accuracy of the prediction equations; race was the most frequently selected variable in the regression analyses. The validity of the prediction equations was dependent upon the number of repetitions performed, i.e., validity was higher when fewer repetitions were completed. Explained variability of 1 RM was slightly higher for all 11 equations when demographic variables were included. A new prediction equation was also developed using the number of repetitions performed and the demographic variables height and fat-free weight.  相似文献   

7.
Athletes experienced in maximal-power and power-endurance training performed 1 set of 2 common power training exercises in an effort to determine the effects of moderately high repetitions upon power output levels throughout the set. Twenty-four and 15 athletes, respectively, performed a set of 10 repetitions in both the bench throw (BT P60) and jump squat exercise (JS P60) with a resistance of 60 kg. For both exercises, power output was highest on either the second (JS P60) or the third repetition (BT P60) and was then maintained until the fifth repetition. Significant declines in power output occurred from the sixth repetition onwards until the 10th repetition (11.2% for BT P60 and 5% for JS P60 by the 10th repetition). These findings suggest that athletes attempting to increase maximal power limit their repetitions to 2 to 5 when using resistances of 35 to 45% 1RM in these exercises.  相似文献   

8.
The Smith machine (SM) (vertical motion of bar on fixed path; fixed-form exercise) and free weights (FWs) (free-form path) are commonly used strength training modes. Exercisers may need to alternate between types of equipment, depending on testing, training, rehabilitation, and/or the exercisers' goals. The purposes of this study were to compare muscle force production for SM and FWs using a 1 repetition maximum (1RM) for the parallel back squat and supine bench press exercises and to predict the 1RM for one mode from 1RM on the other mode. Men (n = 16) and women (n = 16) alternately completed 1RM testing for squat and bench press using SM and FWs. Analyses of variance (type of equipment x sex) and linear regression models were calculated. A significant difference was found between bench press and squat 1RMs for each mode of equipment for all participants. The squat 1RM was greater for the SM than the FWs; conversely, the bench 1RM was greater for FWs than the SM. When sex was considered, bench 1RM for FWs was greater than SM for men and women. The squat 1RM was greater for SM than FWs for women only. The 1RM on one mode of equipment was the best predictor of 1RM for the other mode. For both sexes, the equation SM bench 1RM (in kilograms) = -6.76 + 0.95 (FW bench 1RM) can be used. For women only, SM squat 1RM (in kilograms) = 28.3 + 0.73 (FW squat 1RM). These findings provide equations for converting between SM and FW equipment for training.  相似文献   

9.
10.
Empirical studies of cardiovascular variables suggest that relative heart muscle mass (relative Mh) is a good indicator of the degree of adaptive specialization for prolonged locomotor activities, for both birds and mammals. Reasonable predictions for the maximum oxygen consumption of birds during flight can be obtained by assuming that avian heart muscle has the same maximum physiological and biomechanical performance as that of terrestrial mammals. Thus, data on Mh can be used to provide quantitative estimates for the maximum aerobic power input (aerobic Pi,max) available to animals during intense levels of locomotor activity. The maximum cardiac output of birds and mammals is calculated to scale with respect to Mh (g) as 213 Mh0.88+-0.04 (ml min-1), while aerobic Pi,max is estimated to scale approximately as 11 Mh0.88+-0.09 (W). In general, estimated inter-species aerobic Pi,max, based on Mh for all bird species (excluding hummingbirds), is calculated to scale with respect to body mass (Mb in kg) as 81 Mb0.82+-0.11 (W). Comparison of family means for Mh indicate that there is considerable diversity in aerobic capacity among birds and mammals, for example, among the medium to large species of birds the Tinamidae have the smallest relative Mh (0.25 per cent) while the Otidae have unusually large relative Mh (1.6 per cent). Hummingbirds have extremely large relative Mh (2.28 per cent), but exhibit significant sexual dimorphism in their scaling of Mh and flight muscle mass, so that when considering hummingbird flight performance it may be useful to control for sexual differences in morphology. The estimated scaling of aerobic Pi,max (based on Mh and Mb in g) for male and female hummingbirds is 0.51 Mb0.83 +/-0.07 and 0.44 Mb0.85+- 0.11 (W), respectively. Locomotory muscles are dynamic structures and it might be anticipated that where additional energetic ''costs'' occur seasonally (e.g. due to migratory fattening or the development of large secondary sexual characteristics) then the relevant cardiac and locomotor musculature might also be regulated seasonally. This is an important consideration, both due to the intrinsic interest of studying muscular adaptation to changes in energy demand, but also as a confounding variable in the practical use of heart rate to estimate the energetics of animals. Haemoglobin concentration (or haematocrit) may also be a confounding variable. Thus, it is concluded that data on the cardiovascular and flight muscle morphology of animals provides essential information regarding the behavioural, ecological and physiological significance of the flight performance of animals.  相似文献   

11.
In rodents, the alternation of light and dark is the main synchronizer of circadian rhythms. The entrainment abilities of the LD cycle could be estimated by experimental modifications of the photoperiod and by following the subsequent temporal distribution of a circadian rhythm. The rate of reentrainment of a rhythm is determined by the nature of the studied variable, by the direction (advance or delay) and the magnitude (or value) of the phase shift. In rodents, core body temperature and motor activity are known to be well synchronized with each other under L:D 12:12 and under constant conditions (LL or DD). There are clear evidences that the circadian pattern of motor activity is generated by two oscillators, one from dusk signal and the other from dawn signal. Whether the circadian rhythms of body temperature and motor activity are generated by a common circadian mechanism or controlled by separate ones still remains unknown. The purpose of this review is to summarize the results obtained on the circadian rhythms of body temperature and motor activity throughout the daily cycle in order to clarify the relationships between these two functions.  相似文献   

12.
The purpose of this study was to determine the rate of recovery for recreational weight trainers between 2 sets of bench press to volitional exhaustion. Twenty-eight men performed 2 sets of the bench press at 75% of their previously determined 1 repetition maximum (1RM) to volitional exhaustion. Rest periods of 1, 3, or 5 minutes between sets were utilized on the 3 separate testing days. There was a significant decrease in the number of repetitions performed between the second sets at all rest periods. There were no significant differences in work performed (repetitions x weight) during the second set with the 3- and 5-minute rest periods, but the total work with a 1-minute rest period (1,389.1 +/- 529.9) was significantly less than both the 3- (1,494.9 +/- 451.0) and 5-minute (1,711.4 +/- 478.0) rest period. The data indicated that subjects were unable to fully recover between the first and second sets of maximal resistance exercise, regardless of the rest period. However, subjects were able to maintain a performance level of 8-12 repetitions and sustain the total work performed per set with as little as 3 minutes rest between sets.  相似文献   

13.
The mechanical efficiency of the leg extensor musculature of men and women was examined with a special "sledge ergometer". The subjects (ten males and ten females) performed pure positive work, pure negative work and a combination of negative and positive work (stretch-shortening cycle). The mechanical efficiency of pure positive work was on average 19.8 +/- 1.2% for female subjects and 17.4 +/- 1.2% for male subjects (t = 4.12, P less than 0.001), although the work intensity was equal in both groups. The mechanical efficiency of pure negative work was slightly lower in women than in men (59.3 +/- 14.4% vs 75.6 +/- 29.3%). The mechanical efficiency of positive work (eta +) in a stretch-shortening cycle exercise was 38.1 +/- 6.8% in men and 35.5 +/- 6.9% in women. The utilization of prestretch was better for female subjects at low prestretch levels, whereas males showed greater potentiation of elastic energy at higher prestretch levels. Regarding absolute Wel (work due to elasticity) values, male subjects showed greater (P less than 0.001) values than females (189 +/- 44 J vs 115 +/- 36 J, respectively). Fundamental differences in neuromuscular functions in men and women might cause the differences in the results obtained.  相似文献   

14.
In this study, we analyzed plant community characteristics and the relationship between plant and soil properties based on forest successional stages in depressions between karst hills. The secondary forests showed the maximum number of species, genera, and families with important values >5 and the highest species diversity, and primary forest was the optimal community structure. The arboreal layer played a dominant role in determining fragile karst ecosystem status, followed by shrubs, Al2O3, and Fe2O3. A close relationship existed between species diversity and soil organic C, total N, total P, Fe2O3, MnO, microbial biomass C, and microbial biomass P. Plant characteristics could be explained by the soil nutrient factors (21.6%), soil microbes (17.1%), soil mineral components (10.2%), and interactions among these variables (29.3%).  相似文献   

15.
The postural stability on a seesaw generating anterior–posterior instability with the eyes open (EO) and then the eyes closed (EC) in young healthy subjects (n = 28) before and 6 min after the maximum bicycle exercise (Wingate test) performed using lower limbs (“leg exercise”) or upper limbs (“hand exercise”) was investigated. It was found that “hand exercise” caused the same increase in average velocity (V, mm/s) and in the average range of sway of the centre of pressure (Qy, mm) as “leg exercise.” However, the duration of V recovery (EC: 2 min 30 s and 50 s; EO: 60 s and 40 s after “leg exercise” and “hand exercise,” respectively) and Qy (EC: 1 min 10 s and 30 s after “leg exercise” and “hand exercise,” respectively; EO: no changes from baseline) was shorter after “hand exercise.” In the presence of visual information, the increment in V decreased more than 2 times after “leg exercise” (+100.5% and + 40.5%, p < 0.01 for EC and EO, respectively) and after “hand exercise” (+73.0% and +30.3%, p < 0.01 for EC and EO, respectively). Moreover, Qy after both exercises remained at the initial level under EO conditions but significantly increased under EC conditions (+42.8%, p < 0.01 after “leg exercise” and +40.3%, p < 0.01 after “hand exercise”). Thus, the maximum exercise for the muscles of the upper limbs causes the same reduction in postural stability as analogous exercise for the muscles of the lower limbs, but the recovery period after “hand” exercise was shorter. The presence of visual information allows the baseline maintenance of postural stability and significantly reduces the strain of postural regulation while standing on a movable support after the maximum “leg exercise” and “hand exercise.”  相似文献   

16.
The purpose of this study was to simulate human maximal-effort countermovement jumping with a three-dimensional neuromusculoskeletal model. The specific aim was to investigate muscle force, work and power output of major lower limb muscles during the motion. A neuromusculoskeletal model that has nine rigid body segments, 20 degrees of freedom, 32 Hill-type lower limb muscles was developed. The neural activation input signal was represented by a series of step functions with step duration of 0.05 s. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. A simulation was started from a standing posture. Optimal pattern of the activation input signal was searched through numerical optimization with a goal of maximizing the height reached by the mass center of body after jumping up. As a result, feasible kinematics, ground reaction force profile and muscle excitation profile were generated. It was found that monoarticular muscles had major contributions of mechanical work and power output, whereas biarticular muscles had minor contributions. Hip adductors, abductors and external rotator muscles were vigorously activated, although their mechanical work and power output was minor because of their limited length change during the motion. Joint flexor muscles such as m. iliopsoas, m. biceps femoris short head and m. tibialis anterior were activated in the beginning of the motion with an effect of facilitating the generation of a countermovement.  相似文献   

17.
The purpose of the present study was to examine the acute effects of a caffeine-containing supplement (SUPP) on one-repetition maximum (1-RM) bench press strength and time to running exhaustion (TRE) at a velocity that corresponded to 85% of the peak oxygen uptake ([latin capital V with dot above]O2peak). The study used a double-blinded, placebo-controlled, crossover design. Thirty-one men (mean +/- SD age = 23.0 +/- 2.6 years) were randomly assigned to take either the SUPP or placebo (PLAC) first. The SUPP contained 201 mg of caffeine, and the PLAC was microcrystalline cellulose. All subjects were tested for 1-RM bench press strength and TRE at 45 minutes after taking either the SUPP or PLAC. After 1 week of rest, the subjects returned to the laboratory and ingested the opposite substance (SUPP or PLAC) from what was taken during the previous visit. The 1-RM bench press and TRE tests were then performed in the same manner as before. The results indicated that the SUPP had no effect on 1-RM bench press strength or TRE at 85% [latin capital V with dot above]O2peak. It is possible that the acute effects of caffeine are affected by differences in training status and/or the relative intensity of the exercise task. Future studies should examine these issues, in addition to testing the acute effects of various caffeine doses on performance during maximal strength, power, and aerobic activities. These findings do not, however, support the use of caffeine as an ergogenic aid in untrained to moderately trained individuals.  相似文献   

18.
The purpose of this study was to compare the effect of 3 different rest intervals on the sustainability of squat and bench press repetitions over 5 consecutive sets performed with a 15 repetition maximum (RM)-load. Fifteen college-age men with previous resistance training experience were tested weekly over a period of 3 weeks. During each testing session, 5 consecutive sets of the squat and the bench press were performed with a 30-second, 1-minute, or 2-minute rest interval between sets. For each exercise, significant declines in repetitions occurred between the first and the fifth sets (p = 0.000). For the squat, a significant difference in the ability to sustain repetitions occurred between the 30-second and 2-minute rest condition (p = 0.003). However, differences were not significant between the 30-second and 1-minute rest conditions (p = 0.986) and between the 1-minute and 2-minute rest conditions (p = 0.042). For the bench press, significant differences in the ability to sustain repetitions occurred between the 30-second and 2-minute rest conditions (p = 0.000) and between the 1-minute and 2-minute rest conditions (p = 0.000). However, differences were not significant between the 30-second and 1-minute rest conditions (p = 0.019). For each exercise, the number of repetitions completed on the first set was not sustained over subsequent sets, irrespective of the rest condition. These results suggest that when short rest intervals are used to develop muscular endurance, the intensity should be lowered over subsequent sets to sustain repetitions within the range conducive to this training goal.  相似文献   

19.
The distribution of innervation zones was investigated in 3 subjects for 17 muscles and 8 muscle groups in the upper and lower limb, by detecting bi-directional propagation of motor unit action potentials (MUAPs) with the multichannel surface electrode array. Clarification of the distribution of innervation zones depended on the ease in detecting the propagation of MUAPs and the actual scattering of innervation zones, which were closely related with muscle morphology with respect to the arrangements of muscle fibers. In muscles having fibers running parallel to each other, such as the biceps brachii, intrinsic hand muscles, vastus lateralis and medialis, tensor fasciae latae, peronei, soleus, tibialis anterior, and hypothenar muscles in the foot, it was relatively easy to detect the propagating MUAPs, and the innervation zones were distributed in a relatively narrow band around muscle belly. On the other hand, in muscles with a complicated structure including pinnation of muscle fibers, in-series muscle fibers and aponeurotic tissues, such as the deltoid, flexors and extensors in the forearm, rectus femoris, sartorius, hamstrings and gastrocnemius, it was more difficult to detect the propagating MUAPs and to identify the innervation zones, which were widely scattered or distributed in complex configurations. The distribution of the innervation zones clarified in the present study can be used to find the optimal location of electrodes in surface EMG recordings and of stimulus electrodes in the functional and therapeutic electrical stimulations. It may also be useful in motor point biopsy for diagnosis of neuromuscular diseases as well as in the botulinum toxin injection for the treatment of spasticity.  相似文献   

20.
Agonist premotor silence (PMS), a brief period of relative quiescence in active skeletal muscle prior to phasic activation, was investigated in subjects performing maximal contractions. The frequency of occurrence and potential function of the silent period were examined for elbow flexions and extensions. PMS was evident for movements in both directions, indicating that the mechanism is not primarily limited to extensors as previously hypothesized. Flexions demonstrating PMS exhibited increased velocity and acceleration; however, kinematic facilitation was only evident on trials exhibiting the muscular stretch-shortening cycle (SSC). The SSC was present on trials lacking PMS, demonstrating that biceps and triceps silence are not the sole determinants of preparatory agonist lengthening for elbow flexions and extensions, respectively. Taken together, the data indicate that agonist PMS is a mechanism under apparent central control that acts concomitantly with mechanical factors to potentiate elbow flexor contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号