首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pPT23A plasmid family of Pseudomonas syringae contains members that contribute to the ecological and pathogenic fitness of their P. syringae hosts. In an effort to understand the evolution of these plasmids and their hosts, we undertook a comparative analysis of the phylogeny of plasmid genes and that of conserved chromosomal genes from P. syringae. In total, comparative sequence and phylogenetic analyses were done utilizing 47 pPT23A family plasmids (PFPs) from 16 pathovars belonging to six genomospecies. Our results showed that the plasmid replication gene (repA), the only gene currently known to be distributed among all the PFPs, had a phylogeny that was distinct from that of the P. syringae hosts of these plasmids and from those of other individual genes on PFPs. The phylogenies of two housekeeping chromosomal genes, those for DNA gyrase B subunit (gyrB) and primary sigma factor (rpoD), however, were strongly associated with genomospecies of P. syringae. Based on the results from this study, we conclude that the pPT23A plasmid family represents a dynamic genome that is mobile among P. syringae pathovars.  相似文献   

2.
Pseudomonas savastanoi pv. savastanoi strains harbor native plasmids belonging to the pPT23A plasmid family (PFPs) which are detected in all pathovars of the related species Pseudomonas syringae examined and contribute to the ecological and pathogenic fitness of their host. However, there is a general lack of information about the gene content of P. savastanoi pv. savastanoi plasmids and their role in the interaction of this pathogen with olive plants. We designed a DNA macroarray containing 135 plasmid-borne P. syringae genes to conduct a global genetic analysis of 32 plasmids obtained from 10 P. savastanoi pv. savastanoi strains. Hybridization results revealed that the number of PFPs per strain varied from one to four. Additionally, most strains contained at least one plasmid (designated non-PFP) that did not hybridize to the repA gene of pPT23A. Only three PFPs contained genes involved in the biosynthesis of the virulence factor indole-3-acetic acid (iaaM, iaaH, and iaaL). In contrast, ptz, a gene involved in the biosynthesis of cytokinins, was found in five PFPs and one non-PFP. Genes encoding a type IV secretion system (T4SS), type IVA, were found in both PFPs and non-PFPs; however, type IVB genes were found only on PFPs. Nine plasmids encoded both T4SSs, whereas seven other plasmids carried none of these genes. Most PFPs and non-PFPs hybridized to at least one putative type III secretion system effector gene and to a variety of additional genes encoding known P. syringae virulence factors and one or more insertion sequence transposase genes. These results indicate that non-PFPs may contribute to the virulence and fitness of the P. savastanoi pv. savastanoi host. The overall gene content of P. savastanoi pv. savastanoi plasmids, with their repeated information, mosaic arrangement, and insertion sequences, suggests a possible role in adaptation to a changing environment.  相似文献   

3.
In Pseudomonas syringae pv. tomato PT23.2, plasmid pPT23A (101 kb) is involved in synthesis of the phytotoxin coronatine (C. L. Bender, D. K. Malvick, and R. E. Mitchell, J. Bacteriol. 171:807-812, 1989). The physical characterization of mutations that abolished coronatine production indicated that at least 30 kb of pPT23A DNA are required for toxin synthesis. In the present study, 32P-labeled DNA fragments from the 30-kb region of pPT23A hybridized to plasmid DNAs from several coronatine-producing pathovars of P. syringae under conditions of high stringency. These experiments indicated that this region of pPT23A was strongly conserved in large plasmids (90 to 105 kb) that reside in P. syringae pv. atropurpurea, glycinea, and morsprunorum. The functional significance of the observed homology was demonstrated in marker-exchange experiments in which Tn5-inactivated sequences from the 30-kb region of pPT23A were used to mutate coronatine synthesis genes in the three heterologous pathovars. Physical characterization of the Tn5 insertions generated by marker exchange indicated that genes controlling coronatine synthesis in P. syringae pv. atropurpurea 1304, glycinea 4180, and morsprunorum 567 and 3714 were located on the large indigenous plasmids where homology was originally detected. Therefore, coronatine biosynthesis genes are strongly conserved in the plasmid DNAs of four producing pathovars, despite their disparate origins (California, Japan, New Zealand, Great Britain, and Italy).  相似文献   

4.
Zhao Y  Ma Z  Sundin GW 《Journal of bacteriology》2005,187(6):2113-2126
Members of the pPT23A plasmid family of Pseudomonas syringae play an important role in the interaction of this bacterial pathogen with host plants. Complete sequence analysis of several pPT23A family plasmids (PFPs) has provided a glimpse of the gene content and virulence function of these plasmids. We constructed a macroarray containing 161 genes to estimate and compare the gene contents of 23 newly analyzed and eight known PFPs from 12 pathovars of P. syringae, which belong to four genomospecies. Hybridization results revealed that PFPs could be distinguished by the type IV secretion system (T4SS) encoded and separated into four groups. Twelve PFPs along with pPSR1 from P. syringae pv. syringae, pPh1448B from P. syringae pv. phaseolicola, and pPMA4326A from P. syringae pv. maculicola encoded a type IVA T4SS (VirB-VirD4 conjugative system), whereas 10 PFPs along with pDC3000A and pDC3000B from P. syringae pv. tomato encoded a type IVB T4SS (tra system). Two plasmids encoded both T4SSs, whereas six other plasmids carried none or only a few genes of either the type IVA or type IVB secretion system. Most PFPs hybridized to more than one putative type III secretion system effector gene and to a variety of additional genes encoding known P. syringae virulence factors. The overall gene contents of individual PFPs were more similar among plasmids within each of the four groups based on T4SS genes; however, a number of genes, encoding plasmid-specific functions or hypothetical proteins, were shared among plasmids from different T4SS groups. The only gene shared by all PFPs in this study was the repA gene, which encoded sequences with 87 to 99% amino acid identityamong 25 sequences examined. We proposed a model to illustrate the evolution and gene acquisition of the pPT23A plasmid family. To our knowledge, this is the first such attempt to conduct a global genetic analysis of this important plasmid family.  相似文献   

5.
Many Pseudomonas syringae strains contain native plasmids that are important for host-pathogen interactions, and most of them contain several coexisting plasmids (pPT23A-like plasmids) that cross-hybridize to replication sequences from pPT23A, which also carries a gene cluster coding for the phytotoxin coronatine in P. syringae pv. tomato PT23. In this study, three functional pPT23A-like replicons were cloned from P. syringae pv. glycinea race 6, suggesting that the compatibility of highly related replicons is a common feature of P. syringae strains. Hybridization experiments using three separate incompatibility determinants previously identified from pPT23A and the rulAB (UV radiation tolerance) genes showed that the organization of the replication region among pPT23A-like plasmids from several P. syringae pathovars is poorly conserved. The putative repA gene from four pPT23A-like replicons from P. syringae pv. glycinea race 6 was amplified by using specific primers. The restriction profiles of the resulting PCR products for the race 6 plasmids were more similar to each other than they were to that of pPT23A. These data, together with the existence of other cross-hybridizing DNA regions around the replicon among the race 6 pPT23A-like plasmids, suggest that some of these plasmids may have originated from duplication events. Our results also imply that modifications of the repA sequences and the poor conservation of putative maintenance determinants contribute to the suppression of incompatibility among members of the pPT23A-like family, thus enhancing the genomic plasticity of P. syringae.  相似文献   

6.
Strain PT23 of Pseudomonas syringae pv, tomato contains four native plasmids, designated A, B, C, and D. By DNA hybridization of genomic and plasmid DNA digests from the wild type and a plasmid-cured strain, we determined that c. 61 kb (c. 74%) of pPT23B is repeated in pPT23A and only c. 17 kb (c. 21%) is in single copy in strain PT23. pPT23B also contains DNA repeated in the chromosome that occurs in three DNA fragments of 0.6, 4.6, and 9.6 kb that might be transposable elements. Additionally, the 9.6 kb fragment also shares sequences with the three other plasmids of strain PT23. By DNA hybridization with the origin of replication from a native plasmid of P. syringae pv. syringae and in vivo replication tests, we identified the origins of replication of plasmids A, B, and D and showed that they cross-hybridize. The putative par region from pPT23 A has also been identified and is not conserved in the other three native plasmids from strain PT23. By using the defined minimal origin of replication from pPT23 A as a probe, we showed that it is highly conserved in 14 strains belonging to nine different pathovars of P. syringae and that as many as five different native plasmids with closely related origins of replication coexist in the same cell. The duplication and reorganization of plasmids might therefore occur at high frequency and could be responsible for the existence of large numbers of native plasmids in P. syringae strains.  相似文献   

7.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

8.
A strain of Pseudomonas syringae was recently identified as the cause of a new foliar blight of impatiens. The bacterium was resistant to copper compounds, which are used on a variety of crops for bacterial and fungal disease control. The bacterium contained a single 47-kilobase plasmid (pPSI1) that showed homology to a copper resistance operon previously cloned and characterized from P. syringae pv. tomato plasmid pPT23D (D. Cooksey, Appl. Environ. Microbiol. 53:454-456, 1987). pPSI1 was transformed by electroporation into a copper-sensitive P. syringae strain, and the resulting transformants were copper resistant. A physical map of pPSI1 was constructed, and the extent of homology to pPT23D outside the copper resistance operon was determined in Southern hybridizations. The two plasmids shared approximately 20 kilobases of homologous DNA, with the remainder of each plasmid showing no detectable homology. The homologous regions hybridized strongly, but there was little or no conservation of restriction enzyme recognition sites.  相似文献   

9.
Avirulence gene D (avrD) in strain PT23 of Pseudomonas syringae pv. tomato (Pst) specifies the production of syringolides, which are elicitors of plant defense reactions. An 83-kb indigenous plasmid (pPT23B) that carries avrD has been mapped and characterized and a putative par region was identified. pPT23B contains a large amount of DNA that is repeated in other native plasmids in PT23. A putative mobile insertion element that occurs on plasmid pPT23A as well as on the chromosome was also identified in strain PT23. New broad-host-range expression vectors that functioned in Pst were constructed for overexpression of the cloned avrD gene and high-level production of the syringolides. Introduction of an avrD overexpression plasmid into PT23 or plasmid-cured strains led to identical syringolide peaks on HPLC with no new peaks observed. These results suggested that neither pPT23B nor other indigenous plasmids in Pst carry additional genes required for syringolide production or metabolism. Pst strains lacking pPT23B were not impaired in virulence on tomato plants.  相似文献   

10.
11.
Strains of Pseudomonas syringae pv. syringae were isolated from healthy and diseased stone fruit tissues sampled from 43 orchard sites in California in 1995 and 1996. These strains, together with P. syringae strains from other hosts and pathovars, were tested for pathogenicity and the presence of the syrB and syrC genes and were genetically characterized by using enterobacterial repetitive intergenic consensus (ERIC) primers and PCR. All 89 strains of P. syringae pv. syringae tested were moderately to highly pathogenic on Lovell peach seedlings regardless of the host of origin, while strains of other pathovars exhibited low or no pathogenicity. The 19 strains of P. syringae pv. syringae examined by restriction fragment length polymorphism analysis contained the syrB and syrC genes, whereas no hybridization occurred with 4 strains of other P. syringae pathovars. The P. syringae pv. syringae strains from stone fruit, except for a strain from New Zealand, generated ERIC genomic fingerprints which shared four fragments of similar mobility. Of the P. syringae pv. syringae strains tested from other hosts, only strains from rose, kiwi, and pear generated genomic fingerprints that had the same four fragments as the stone fruit strains. Analysis of the ERIC fingerprints from P. syringae pv. syringae strains showed that the strains isolated from stone fruits formed a distinct cluster separate from most of the strains isolated from other hosts. These results provide evidence of host specialization within the diverse pathovar P. syringae pv. syringae.  相似文献   

12.
13.
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.  相似文献   

14.
The effect of the plasmid-encoded rulAB (resistance to ultraviolet radiation) determinant on responses of Pseudomonas syringae to ultraviolet-B (UV-B) radiation and the distribution of rulAB among pathovars of P. syringae were determined. The cloned rulAB determinant and the native rulAB + plasmid pPSR1 both conferred approximately a 10-fold increase in survival on P. syringae pv. syringae FF5 following increasing doses of UV-B radiation. rulAB + P. syringae strains also maintained significantly larger epiphytic populations on leaf surfaces irradiated with UV-B. rulAB -insertional mutants, constructed in two native rulAB + strains, were from 10- to 100-fold more sensitive to UV-B radiation. The UV tolerance phenotype and the rulAB genes were widely distributed among P. syringae pathovars isolated from varied plant hosts throughout the world and within a broad range of genotypic backgrounds of P. syringae pv. syringae. With one exception, the rulAB determinant was harboured on pPT23A-like plasmids; these replicons are indigenous residents of the species P. syringae and also tend to encode determinants of importance in host–pathogen interactions.  相似文献   

15.
The efficacy of copper bactericides for control of Xanthomonas campestris pv. vesicatoria in eastern Oklahoma tomato fields was evaluated. Copper bactericides did not provide adequate control, and copper-resistant (Cur) strains of the pathogen were isolated. The Cur genes in these strains were located on a large indigenous plasmid designated pXV10A. The host range of pXV10A was investigated; this plasmid was efficiently transferred into 8 of 11 X. campestris pathovars. However, the transfer of pXV10A to other phytopathogenic genera was not detected. DNA hybridization experiments were performed to characterize the Cur genes on pXV10A. A probe containing subcloned Cur genes from X. campestris pv. vesicatoria E3C5 hybridized to pXV10A; however, a subclone containing Cur genes from P. syringae pv. tomato PT23 failed to hybridize to pXV10A. Further DNA hybridization experiments were performed to compare pXV10A with pXvCu plasmids, a heterogenous group of Cur plasmids present in strains of X. campestris pv. vesicatoria from Florida. These studies indicated that the Cur genes on pXV10A and pXvCu plasmids share nucleotide sequence homology and may have a common origin. Further experiments showed that these plasmids are distinctly different because pXV10A did not contain sequences homologous to IS476, an insertion sequence present on pXvCu plasmids.  相似文献   

16.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

17.
Pseudomonas syringae pathovars are important pathogens among phytopathogenic bacteria causing a variety of diseases in plants. These pathogens can rapidly disseminate in a large area leading to infection and destruction of plants. To prevent the incidence of the bacteria, appropriate detection methods should be employed. Routinely serological tests, being time-consuming and costly, are exploited to detect these pathogens in plants, soil, water and other resources. Over the recent years, DNA-based detection approaches which are stable, rapid, specific and reliable have been developed and sequence analysis of various genes are widely utilized to identify different strains of P. syringe. However, the greatest limitation of these genes is inability to detect numerous pathovars of P. syringae. Herein, by using bioinformatic analysis, we found the hrcV gene located at pathogenicity islands of bacterial genome with the potential of being used as a new marker for phylogenetic detection of numerous pathovars of P. syringae. Following design of specific primers to hrcV, we amplified a 440 bp fragment. Of 13 assayed pathovars, 11 were detected. Also, through experimental procedures and bioinformatic analysis it was revealed that the designed primers have the capacity to detect 19 pathovars. Our findings suggest that hrcV could be used as a gene with the merit of detecting more pathovars of P. syringae in comparison with other genes used frequently for detection purposes.  相似文献   

18.
Summary A group of pathogenicity genes was previously identified in Pseudomonas syringae pv. phaseolicola which controls the ability of the pathogen to cause disease on bean and to elicit the hypersensitive response on non-host plants. These genes, designated hrp, are located in a ca. 20 kb region which was referred to as the hrp cluster. Homologous sequences to DNA segments derived from this region were detected in several pathovars of P. syringae but not in symbiotic, saprophytic or other phytopathogenic bacteria. A Tn5-induced Hrp- mutation was transferred from P. syringae pv. phaseolicola to P. syringae pv. tabaci and to three races of P. syringae pv. glycinea by marker exchange mutagenesis. The resulting progeny were phenotypically Hrp-, i.e. no longer pathogenic on their respective hosts and unable to elicit the hypersensitive response on non-host plants. These mutants were restored to wild-type phenotype upon introduction of a recombinant plasmid carrying the corresponding wild-type locus from P. syringae pv. phaseolicola. The marker exchange mutants of P. syringae pv. glycinea psg0 and Psg5 which carry different avr genes for race specific avirulence did not elicit a hypersensitive response on incompatible soybean cultivars. It appears, therefore, that P. syringae pathovars possess common genes for pathogenicity which also control their interaction with non-host plants. Furthermore, the expression of race/cultivar specific incompatibility of P. syringae pv. glycinea requires a fully functional hrp region in addition to the avr genes which determine avirulence on single-gene differential cultivars of soybean.  相似文献   

19.
Pseudomonas syringae is a common foliar bacterium responsible for many important plant diseases. We studied the population structure and dynamics of the core genome of P. syringae via multilocus sequencing typing (MLST) of 60 strains, representing 21 pathovars and 2 nonpathogens, isolated from a variety of plant hosts. Seven housekeeping genes, dispersed around the P. syringae genome, were sequenced to obtain 400 to 500 nucleotides per gene. Forty unique sequence types were identified, with most strains falling into one of four major clades. Phylogenetic and maximum-likelihood analyses revealed a remarkable degree of congruence among the seven genes, indicating a common evolutionary history for the seven loci. MLST and population genetic analyses also found a very low level of recombination. Overall, mutation was found to be approximately four times more likely than recombination to change any single nucleotide. A skyline plot was used to study the demographic history of P. syringae. The species was found to have maintained a constant population size over time. Strains were also found to remain genetically homogeneous over many years, and when isolated from sites as widespread as the United States and Japan. An analysis of molecular variance found that host association explains only a small proportion of the total genetic variation in the sample. These analyses reveal that with respect to the core genome, P. syringae is a highly clonal and stable species that is endemic within plant populations, yet the genetic variation seen in these genes only weakly predicts host association.  相似文献   

20.
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号