首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major part of the dissolved organic matter produced in the organic layers of forest ecosystems and leached into the mineral soil is retained by the upper subsoil horizons. The retention is selective and thus dissolved organic matter in the subsoils has different composition than dissolved organic matter leached from the forest floor. Here we report on changes in the composition of dissolved organic matter with soil depth based on C-to-N ratios, XAD-8 fractionation, wet-chemical analyses (lignin-derived CuO oxidation products, hydrolysable sugars and amino sugars) and liquid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Dissolved organic matter was sampled directly beneath the forest floor using tension-free lysimeters and at 90cm depth by suction cups in Haplic Arenosols under Scots pine (Pinus sylvestris L.) and Rendzic Leptosols under European beech (Fagus sylvatica L.) forest. At both sites, the concentrations of dissolved organic carbon (DOC) decreased but not as strongly as reported for deeply weathered soils. The decrease in DOC was accompanied by strong changes in the composition of dissolved organic matter. The proportion of the XAD-8-adsorbable (hydrophobic) fraction, carboxyl and aromatic C, and the concentrations of lignin-derived phenols decreased whereas the concentrations of sugars, amino sugars, and nitrogen remained either constant or increased. A general feature of the compositional changes within the tested compound classes was that the ratios of neutral to acidic compounds increased with depth. These results indicate that during the transport of dissolved organic matter through the soils, oxidatively degraded lignin-derived compounds were preferentially retained while potentially labile material high in nitrogen and carbohydrates tended to remain dissolved. Despite the studied soils' small capacity to sorb organic matter, the preferential retention of potentially refractory and acidic compounds suggests sorption by the mineral soil matrix rather than biodegradation to govern the retention of dissolved organic matter even in soils with a low sorption capacity.  相似文献   

2.
Organically bound phosphorus (P) is a mobile form of phosphorus in many soils and thus its dynamics relevant for the leaching and cycling of this element. Despite its importance, little is known about the chemical composition of dissolved organic P. We studied the concentrations, fluxes, and chemical composition of organic P in forest floor leachates and soil solutions in a Rendzic Leptosol under a 90-year-old European beech (Fagus sylvatica L.) forest over a 27-month period (1997–1999). The chemical composition of organic P was analysed using XAD-8 fractionation and 31P-nuclear magnetic resonance (NMR) spectroscopy. Organic P was the dominant P form in forest floor leachates as well as in porewaters of the mineral soil. The largest concentrations of organic P were observed during summer and peaked (330–400 g dissolved organic P l–1) after rain storms following short dry periods, concurrently with the concentrations of organic carbon (OC). Because of high rainfall, fluxes of organic P (and C) were greatest in autumn although concentrations of organic C and P were lower than in summer. In forest floor leachates, the hydrophilic fraction of dissolved organic matter contained 83 ± 13% of the bulk organic P. In soil solutions from 90 cm depth, organic P was almost exclusively in the hydrophilic fraction. Because of the low retention of the hydrophilic fraction of dissolved organic matter in the mineral soils, concentrations of organic P in soil water remained almost constant with depth. Consequently, organic P contributed > 95% of the total P leached into deeper subsoils. The overall retention of organic P in the weakly developed mineral soils was little and so the average annual fluxes of organic P in subsoils at 90 cm depth (38 mg m–2) comprised 67% of those from the forest floors (57 mg m–2) during the study period. Hence, organic P proved to be mobile in the studied soil. 31P-NMR spectroscopy confirmed the dominance of organic P species in soil water. Signals due to inorganic P occurred only in spectra of samples collected in winter and spring months. Spectra of samples from summer and autumn revealed traces of condensed phosphates. Due to low P contents, identification of organic P species in samples from winter and spring was not always possible. In summer and autumn, monoester and diester phosphates were the dominant organic species and varied little in their relative distributions. The distribution of organic species changed little from forest floor leachates to the subsoil solutions indicating that the composition of P-containing compounds was not influenced by sorptive interactions or biological transformation.  相似文献   

3.
Organically bound species have been identified as prominent and mobile forms of nitrogen and phosphorus in soils. Since a large portion of sulphur (S) in soil is bonded to carbon (C) also dissolved organic S likely is a significant constituent in soil water. To investigate the role of dissolved organic forms in leaching and cycling of S in forest soils, we examined concentrations, fluxes, and chemical composition of organic S in forest floor leachates and in soil solutions of Rendzic Leptosols under 90-year-old European beech (Fagus sylvatica L.) and Haplic Arenosols under 160-year-old Scots pine (Pinus sylvestris L.) for 27 months. These soils are low in adsorbed SO42- and receive little atmospheric S depositions at present. The chemical composition of organic S was estimated by fractionation with XAD-8 and wet-chemical characterisation (HI reduction) of binding forms. Although not as prominent as the organic forms of other nutrient elements, organic S proved to be an important contributor to S dissolved in forest floor leachates and in mineral soil solutions. Dissolved organic matter contained on average 29% of total S in forest floor leachates at the pine site and 34% at the beech site. The largest portion of organic S occurred in the subsoil solutions under beech in summer and autumn (up to 53%). Mean concentrations of organic S peaked (up to 1.1 mg l-1) in summer after rainstorms that followed dry periods. Fluxes with forest floor leachates and at 90 cm soil depth were largest in autumn because of huge amounts of rainfall. Organic S contributed significantly to the fluxes of S in the subsoils under beech comprising on average 39% of total dissolved S at 90 cm depth. Organic S produced in the forest floor layers was mainly in the hydrophilic fraction of dissolved organic matter (62 ± 6% at the pine site, 85 ± 4% at the beech site). The major binding form of organic S in the hydrophobic fraction was C-bonded S while in the hydrophilic fraction ester sulphate S, possibly associated with carbohydrates, was more prominent. Since the hydrophobic fraction increased in summer and autumn, C-bonded S was of greater importance during that time of the year than in winter and spring. With depth, concentrations and composition of organic S (and also of C) hardly changed at the pine site because of little retention of dissolved organic matter, presumably because of the small sorption capability of that soil. At the beech where organic C showed a marked decrease with depth, only a slight decrease in organic S, exclusively from the hydrophobic fraction, was found indicating that organic S was mobile compared with organic C. This was probably due to the concentration of S in the hydrophilic fraction of dissolved organic matter. Because of being concentrated in the mobile hydrophilic fraction, ester sulphate S was more mobile in the soil under beech than C-bonded S.  相似文献   

4.
Export of dissolved organic carbon (DOC) from forested catchmentsis governed by competing processes of production, decomposition, sorptionand flushing. To examine the sources of DOC, carbon isotopes (14Cand 13C) were analyzed in DOC from surface waters, groundwatersand soils in a small forested catchment on the Canadian Shield in centralOntario. A significant fraction (greater than 50%) of DOCin major inflows to the lake is composed of carbon incorporated into organicmatter, solubilized and flushed into the stream within the last 40 years. Incontrast, 14C in groundwater DOC was old indicating extensiverecycling of forest floor derived organic carbon in the soil column beforeelution to groundwater in the lower B and C soil horizons. A small uplandbasin had a wide range in 14C from old groundwater values atbaseflow under dry basin conditions to relatively modern values during highflow or wetter antecedent conditions. Wetlands export mainly recently fixedcarbon with little seasonal range. DOC in streams entering the small lakemay be composed of two pools; an older recalcitrant pool delivered bygroundwater and a young labile pool derived from recent organic matter.The relative proportion of these two pools changes seasonally due thechanges in the water flowpaths and organic carbon dynamics. Althoughchanges in local climate (temperature and/or precipitation) may alterthe relative proportions of the old and young pools, the older pool islikely to be more refractory to sedimentation and decomposition in thelake setting. Delivery of older pool DOC from the catchment andsusceptibility of this older pool to photochemical decomposition mayconsequently be important in governing the minimum DOC concentrationlimit in lakes.  相似文献   

5.
Characterization of solid and dissolved carbon in a spruce-fir Spodosol   总被引:4,自引:0,他引:4  
Organic substances are an integral part of the biogeochemistry of many elements in forest ecosystems. However, our understanding of the composition, chemistry, and reactions of these materials are incomplete and sometimes inconsistent. Therefore, we examined in detail dissolved organic carbon (DOC) in forest floor leachates over a two-year period (1992–1993), soil C, and DOC adsorption by a mineral soil to determine the relationship between soil solid and solution C characteristics in a spruce-fir ecosystem. The structural composition of DOC, DOC fractions (hydrophobic and hydrophilic acids, hydrophilic neutrals), and soil samples from the organic and mineral horizons were also analyzed using13C nuclear magnetic resonance (NMR) spectroscopy.Total DOC in forest floor leachates ranged from 7.8 to 13.8 mmol L–1 with an average of 8.6 mmol L–1. Concentrations were highest in September of both 1992 and 1993. Fractionation of the forest floor DOC indicated these solutions contained high organic acid contents that averaged 92% of the total DOC. Hydrophobic acids were also preferentially adsorbed by the B horizon. The13C NMR data suggested alkyl, carbohydrate, aromatic, and carboxylic C were the primary constituents for organic and mineral soils, DOC, and DOC fractions. Compositional changes of C were observed as aromatic and carbohydrate decreased, whereas alkyl, methoxy, and carbonyl moieties increased with depth. However, C composition changed little among the three organic layers based on the similarity of alkyl/carbohydrates ratios as determined from NMR area integration, suggesting that in this acid soil, decomposition proceeds rather slowly. Hydrophobic acids contained high contents of aromatic C, whereas hydrophilic acids were comprised primarily of carboxylic C. Hydrophilic neutrals were rich in carbohydrate C. Results indicated that these DOC fractions were unaltered during the isolation process. Carboxylic C groups appeared to dissolve easily and were probably the primary contributor to organic acidity in our organic dominate leachates. Results also suggested that DOC materials adsorbed on the B horizon underwent further biodegradation. Several seasonal patterns of C composition were observed in the forest floor leachates and DOC fractions collected between 1992 and 1993.Overall, the evidence from this study suggested that (i) DOC levels were mainly controlled by biological activity, (ii) forest floor DOC was comprised primarily of organic acids, (iii) contact of soil leachates with B horizon material affected DOC quantitatively and qualitatively, (iv) phenolic, carboxylic, and carbonyl C appeared to dissolve readily in the forest Oa horizon, (v) DOC materials adsorbed on the B horizon selectively underwent further decomposition, and (vi) C composition is a function of the extent of decomposition and DOC fractions.  相似文献   

6.
On a global basis, nearly 42% of tropical land area is classified as tropical deciduous forest (TDF) (Murphy and Lugo 1986). Currently, this ecosystem has very high deforestation rates; and its conversion to cattle pasture may result in losses of soil organic matter, decreases in soil fertility, and increases in CO2 flux to the atmosphere. The soil organic matter turnover rate in a TDF after pasture conversion was estimated in Mexico by determining natural abundances of13C. Changes in these values would be induced by vegetation changes from the C3 (forest) to the C4 (pasture) photosynthetic pathway. The rate of loss of remnant forest-soil organic matter (fSOM) was 2.9 t ha–1 year–1 in 7-year-old pasture and decreased to 0.66 t ha–1 year–1 by year 11. For up to 3 years, net fSOM level increased in pastures; this increment can be attributed to decomposition of remnant forest roots. The sand-associated SOM fraction was the most and the silt-associated fraction the least depleted. TDF conversion to pasture results in extremely high rates of loss of remnant fSOM that are higher than any reported for any tropical forest.  相似文献   

7.
The allocation of carbon (C) to plant roots and conversion to soil organic matter is a major determinant of the size of the terrestrial C pool in pastoral ecosystems. The aim was to quantify C allocation to roots in contrasting pastoral ecosystems. Pastures on long-term research sites in Canterbury, New Zealand were pulse-labelled using 13CO2 within portable gas-tight enclosures. Sites included Winchmore (with or without superphosphate fertiliser, and with or without irrigation) and Tara Hills (low, medium or high grazing intensity with continuous or alternating grazing). Separate micro-plots were labelled in late spring, summer and autumn at Winchmore and in spring at Tara Hills. Herbage label 13C recoveries were greatest one hour after pulse labelling and declined by 21 days, whereas in roots they were initially lower but generally continued to increase until 21 days. The greatest recoveries of 13C in roots, one hour and 21 days after labelling, were in summer and autumn respectively. The proportion of label 13C allocated to roots by 21 days was 0.50 in the absence of superphosphate and 0.41 in the superphosphate treatment, and was 0.39, 0.43 and 0.51 respectively in spring, summer and autumn. Irrigation had no significant effect on root allocation. The low stocking rate at Tara Hills, which had the greatest herbage biomass, also had greater total 13C, tussock herbage 13C and root 13C recoveries than the higher stocking rate treatments. Inter-tussock root recovery and allocation of 13C to roots increased with increasing stocking rate, whereas tussock root allocation was greatest in the high and least in the medium stocking rate treatment. By 21 days there was a greater inter-tussock and tussock root recovery and lower inter-tussock herbage recovery in the continuous than in the alternating grazing management treatment. The root allocation was generally greater in the continuous than in alternating grazed treatments, except for tussocks one hour after labelling where the reverse was the case. In conclusion the 13C pulse labelling showed pasture plants allocate more C to roots with low soil fertility, high grazing intensity, continuous grazing, and in autumn.  相似文献   

8.
Summary The variability of 13C values was measured in leaf, stem and root tissues of several tree species growing in closed natural and plantation forests in the Luquillo mountains of Puerto Rico. Results confirm a significant decrease of 13C values from the tree canopy to the forest floor. The values measured in understory plants growing in gaps were not significantly different from the average for plants growing under the forest shade. Seedling leaf values tended to be more positive than those of saplings, probably reflecting the contribution of organic matter from the mother tree. Photosynthetic independence on the forest floor results in a reduction in °13C value. Stem and root tissue values of seedlings and saplings were less negative than those of the leaves of the same plants. It is suggested that this difference results from the slower change in isotopic composition experienced by the woody tissue, as the seedlings become photosynthetically independent in the forest floor.  相似文献   

9.
Rhizodeposition, i.e. the release of carbon into the soil by growing roots, is an important part of the terrestrial carbon cycle. However thein situ nature and dynamics of root-derived carbon in the soil are still poorly understood. Here we made an investigation of the latter in laboratory experiments using13CO2 pulse chase labelling of wheat (Triticum aestivum L.). We analyzed the kinetics of13C-labelled carbon and more specially13C carbohydrates in the rhizosphere. Wheat seedlings-soil mesocosms were exposed to13CO2 for 5 hours in controlled chambers and sampled repeatedly during two weeks for13C/C analysis of organic carbon. After a two-step separation of the soil from the roots, the amount of total organic13C was determined by isotope ratio mass spectrometry as well as the amounts of13C in arabinose, fructose, fucose, glucose, galactose, mannose, rhamnose and xylose. The amount and isotopic ratio of monosaccharides were obtained by capillary gas chromatography coupled with isotope ratio mass spectrometry (GC/C/IRMS) after trimethyl-silyl derivatization. Two fractions were analyzed : total (hydrolysable) and soluble monomeric (water extractable) soil sugars. The amount of organic13C found in the soil, expressed as a percentage of the total photosynthetically fixed13C at the end of the labelling period, reached 16% in the day following labelling and stabilised at 9% after one week. We concluded that glucose under the form of polymers was the dominant moietie of rhizodeposits. Soluble glucose and fructose were also present. But after 2 days, these soluble sugars had disappeared. Forty percent of the root-derived carbon was in the form of neutral sugars, and exhibited a time-increasing signature of microbial sugars. The composition of rhizospheric sugars rapidly tended towards that of bulk soil organic matter.  相似文献   

10.
Lefroy  Rod D. B.  Blair  Graeme J.  Strong  Wayne M. 《Plant and Soil》1993,155(1):399-402
The decline in soil organic matter with cropping is a major factor affecting the sustainability of cropping systems. Changes in total C levels are relativelyinsensitive as a sustainability measure. Oxidation with different strength KMnO4 has been shown to be a more sensitive indicator of change. The relative size of soil C fractions oxidised by 333 mM KMnO4 declined with cropping, whilst the relative size of the unoxidised fraction increased. Changes in 13C ratio have been used to measure C turnover in systems which include C3 and C4 species.  相似文献   

11.
Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size‐density fractionation and solid‐state 13C‐NMR spectroscopy to explore the extent to which declines in microbial decay in a long‐term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N‐alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine‐texture forest soils.  相似文献   

12.
The mechanisms behind the 13C enrichment of organic matter with increasing soil depth in forests are unclear. To determine if 13C discrimination during respiration could contribute to this pattern, we compared δ13C signatures of respired CO2 from sieved mineral soil, litter layer and litterfall with measurements of δ13C and δ15N of mineral soil, litter layer, litterfall, roots and fungal mycelia sampled from a 68-year-old Norway spruce forest stand planted on previously cultivated land. Because the land was subjected to ploughing before establishment of the forest stand, shifts in δ13C in the top 20 cm reflect processes that have been active since the beginning of the reforestation process. As 13C-depleted organic matter accumulated in the upper soil, a 1.0‰ δ13C gradient from −28.5‰ in the litter layer to −27.6‰ at a depth of 2–6 cm was formed. This can be explained by the 1‰ drop in δ13C of atmospheric CO2 since the beginning of reforestation together with the mixing of new C (forest) and old C (farmland). However, the isotopic change of the atmospheric CO2 explains only a portion of the additional 1.0‰ increase in δ13C below a depth of 20 cm. The δ13C of the respired CO2 was similar to that of the organic matter in the upper soil layers but became increasingly 13C enriched with depth, up to 2.5‰ relative to the organic matter. We hypothesise that this 13C enrichment of the CO2 as well as the residual increase in δ13C of the organic matter below a soil depth of 20 cm results from the increased contribution of 13C-enriched microbially derived C with depth. Our results suggest that 13C discrimination during microbial respiration does not contribute to the 13C enrichment of organic matter in soils. We therefore recommend that these results should be taken into consideration when natural variations in δ13C of respired CO2 are used to separate different components of soil respiration or ecosystem respiration.  相似文献   

13.
Dissolved organic matter (DOM) contributes to organic carbon either stored in mineral soil horizons or exported to the hydrosphere. However, the main controls of DOM dynamics are still under debate. We studied fresh leaf litter and more decomposed organic material as the main sources of DOM exported from the forest floor of a mixed beech/oak forest in Germany. In the field we doubled and excluded aboveground litter input and doubled the input of throughfall. From 1999 to 2005 we measured concentrations and fluxes of dissolved organic C and N (DOC, DON) beneath the Oi and Oe/Oa horizon. DOM composition was traced by UV and fluorescence spectroscopy. In selected DOM samples we analyzed the concentrations of phenols, pentoses and hexoses, and lignin-derived phenols by CuO oxidation. DOC and DON concentrations and fluxes almost doubled instantaneously in both horizons of the forest floor by doubling the litter input and DOC concentrations averaged 82 mg C l−1 in the Oe/Oa horizon. Properties of DOM did not suggest a change of the main DOM source towards fresh litter. In turn, increasing ratios of hexoses to pentoses and a larger content of lignin-derived phenols in the Oe/Oa horizon of the Double litter plots in comparison to the Control plots indicated a priming effect: Addition of fresh litter stimulated microbial activity resulting in increased microbial production of DOM from organic material already stored in Oe/Oa horizons. Exclusion of litter input resulted in an immediate decrease in DOC concentrations and fluxes in the thin Oi horizon. In the Oe/Oa horizon DOC concentrations started to decline in the third year and were significantly smaller than those in the Control after 5 years. Properties of DOM indicated an increased proportion of microbially and throughfall derived compounds after exclusion of litter inputs. Dissolved organic N did not decrease upon litter exclusion. We assume a microbial transformation of mineral N from throughfall and N mineralization to DON. Increased amounts of throughfall resulted in almost equivalently increased DOC fluxes in the Oe/Oa horizon. However, long-term additional throughfall inputs resulted in significantly declining DOC concentrations over time. We conclude that DOM leaving the forest floor derives mainly from decomposed organic material stored in Oe/Oa horizons. Leaching of organic matter from fresh litter is of less importance. Observed effects of litter manipulations strongly depend on time and the stocks of organic matter in forest floor horizons. Long-term experiments are particularly necessary in soils/horizons with large stocks of organic matter and in studies focusing on effects of declined substrate availability. The expected increased primary production upon climate change with subsequently enhanced litter input may result in an increased production of DOM from organic soil horizons.  相似文献   

14.
Estimating C inputs retained as soil organic matter from corn (Zea Mays L.)   总被引:3,自引:0,他引:3  
Bolinder  M.A.  Angers  D.A.  Giroux  M.  Laverdière  M.R. 《Plant and Soil》1999,215(1):85-91
In agroecosystems, the annual C inputs to soil are a major factor controlling soil organic matter (SOM) dynamics. However, the ability to predict soil C balance for agroecosystems is limited because of difficulties in estimating C inputs and in particular from the below-ground part. The objective of this paper was to estimate the proportion of corn residue retained as SOM. For that purpose, the results of a 13C long-term (15 yr) field study conducted on continuous silage corn and two silage corn rotations along with data from the existing literature were analyzed. The total amount of corn-derived C (0–30 cm) was about 2.5 to 3.0 times higher for the continuous corn treatment (445 g m-2), compared to the two rotational treatments (175 and 133 g m-2 for the corn-barley-barley-wheat and corn-underseeded barley hay-hay rotations, respectively). Assuming that the C inputs to the soil from silage-corn was mainly roots and would have been similar across treatments on an annual basis, the total amount of corn-derived C for the two rotational treatments was approximately proportional to the number of years the silage-corn was present in the rotation (4 yr). The results from the current study indicate that about 17% of root-derived C is retained as SOM. This value is higher than those reported in the literature for long-term studies on shoot-derived C (range of 7.7 to 20%, average of 12.2%), which is in agreement with previous studies showing that more C is retained as SOM from roots than from shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The morphological and anatomical variability ofDiplotaxis erucoides populations from Sicily was investigated. Populations growing during the summer months exhibit distinct xeromorphic features. Leaf area is strongly reduced and leaf thickness is increased when compared with winter populations. Cell size, as well as cell arrangement and mesophyll cell surface area differ significantly between summer and winter populations. Leaf thickness is almost three times higher in summer populations andA (cell)/A, i.e. the mesophyll cell surface area per unit leaf area changes from about 16 for winter populations to almost 52 for summer populations. These differences are partly due to differences in intercellular volume and partly due to alterations in mesophyll cell sizes. The organic materal of the summer populations exhibits 13C values in the order of –27%. to –28%., while the corresponding values for the winter populations are in the order of –31%. to –33%.. Analysis ofD. erucoides populations from the transition period revealed intermediate 13C values. Anatomical variations such as reductions or increases ofA (cells)/A and changes of intercellular volume correlate with the corresponding 13C data. The 13C data are discussed in conjunction with the differences in leaf anatomy.  相似文献   

16.
亚热带不同林分土壤表层有机碳组成及其稳定性   总被引:5,自引:0,他引:5  
在浙江临安玲珑山选取了常绿阔叶林、马尾松林、板栗林和雷竹林4种林分,采用传统的化学方法与固态13C核磁共振(NMR)技术研究其土壤有机碳在不同粒径土壤颗粒中的分布规律和结构特征,探讨林分类别和管理措施对土壤有机碳含量及其结构的影响,为亚热带地区森林固碳和土壤碳库管理提供科学依据。结果显示:(1)土壤表层(0—20 cm)有机碳含量按以下次序递减:雷竹林>常绿阔叶林>马尾松林>板栗林,且板栗林以粉黏粒结合态碳为主,其他林分土壤则以粗砂结合态碳为主;(2)13C NMR结果表明,阔叶林和马尾松林土壤有机碳中烷基碳所占比例最大,而雷竹林和板栗林则是烷氧碳比例最大,表明人工经营措施改变了土壤有机碳的成分组成;(3)随着土壤颗粒变细,有机碳中烷基碳比例增加,烷氧碳比例减少,A/O-A值和疏水碳/亲水碳值逐渐增大,表明颗粒越细,其结合的有机碳结构稳定性越高。  相似文献   

17.
France  R. L. 《Hydrobiologia》2000,441(1):237-240
Beaver are well known to influence the geomorphology and geochemistry of boreal waters, in addition to being prominent vectors in the selective import of deciduous coarse woody debris (CWD). Because the stable carbon isotope ratios of deciduous trees are lower than those of coniferous trees, the possibility exists that the 13C values of particulate organic matter near beaver lodges may differ from those characteristic for littoral regions without beaver activity. In agreement with this supposition, 13C was found to significantly increase in progressively smaller size fractions of CWD collected from near lodges, probably due to the more rapid breakdown, decomposition and disappearance of deciduous material.  相似文献   

18.
This study investigated the relationship between 13C of ecosystem components, soluble plant carbohydrates and the isotopic signature of ecosystem respired CO2 (13CR) during seasonal changes in soil and atmospheric moisture in a beech (Fagus sylvatica L.) forest in the central Apennine mountains, Italy. Decrease in soil moisture and increase in air vapour pressure deficit during summer correlated with substantial increase in 13C of leaf and phloem sap soluble sugars. Increases in 13C of ecosystem respired CO2 were linearly related to increases in phloem sugar 13C (r2=0.99, P0.001) and leaf sugar 13C (r2=0.981, P0.01), indicating that a major proportion of ecosystem respired CO2 was derived from recent assimilates. The slopes of the best-fit lines differed significantly (P0.05), however, and were about 0.86 (SE=0.04) for phloem sugars and about 1.63 (SE=0.16) for leaf sugars. Hence, changes in isotopic signature in phloem sugars were transferred to ecosystem respiration in the beech forest, while leaf sugars, with relatively small seasonal changes in 13C, must have a slower turnover rate or a significant storage component. No significant variation in 13C was observed in bulk dry matter of various plant and ecosystem components (including leaves, bark, wood, litter and soil organics). The apparent coupling between the 13C of soluble sugars and ecosystem respiration was associated with large apparent isotopic disequilibria. Values of 13CR were consistently more depleted by about 4 relative to phloem sugars, and by about 2 compared to leaf sugars. Since no combination of the measured pools could produce the observed 13CR signal over the entire season, a significant isotopic discrimination against 13C might be associated with short-term ecosystem respiration. However, these differences might also be explained by substantial contributions of other not measured carbon pools (e.g., lipids) to ecosystem respiration or contributions linked to differences in footprint area between Keeling plots and carbohydrate sampling. Linking the seasonal and inter-annual variations in carbon isotope composition of carbohydrates and respiratory CO2 should be applicable in carbon cycle models and help the understanding of inter-annual variation in biospheric sink strength.  相似文献   

19.
Solid-state 13C NMR were used to follow organic matter transformation in a subsurface wetland under the effluent of a small cheese-dairy farm under a Mediterranean climate. The results showed that the ratios commonly used to quantify humification, (aromaticity and Alkyl-C/O-Alkyl-C ratios) can be considered as relevant chemical indicators of organic matter transformation. Polysaccharides were transformed throughout the subsurface wetland whereas aromatic, phenolic and alkyl compounds accumulated. Furthermore, Phenolic-C signal and O-Alkyl-C signal were negatively correlated to proteases and β-galactosidase activities showing that recalcitrant molecules actually accumulated. These results were correlated with high purification yields: the average decrease in chemical demand in oxygen was 90.75% and that in Total Kjeldahl Nitrogen was 75.65%. Thus subsurface wetlands can be considered as an efficient technology to purify effluents with high organic matter contents, such as cheese-dairy effluent, under drastic climate conditions. Furthermore this study highlights the fact that solid-state 13C NMR is a suitable tool to follow organic matter transformation.  相似文献   

20.
In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. 13C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C3) are recent components of former grasslands (C4), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号