首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAPK signaling is involved in camptothecin-induced cell death   总被引:3,自引:0,他引:3  
Camptothecin, a topoisomerase I inhibitor, is a well-known anticancer drug. However, its mechanism has not been well studied in human gastric cancer cell lines. Camptothecin induced apoptotic cell death in human gastric cancer cell line AGS. Z-VAD-fmk, pan-caspase inhibitor, blocked apoptotic phenotypes induced by camptothecin suggesting that caspases are involved in camptothecin-induced cell death. An inhibitor of caspase-6 or -8 or -9 did not prevent cell death by camptothecin. Various protease inhibitors failed to prevent camptothecin-induced cell death. These results suggest that only few caspases are involved in camptothecin-induced cell death. Camptothecin induced phosphorylation of ERK1/2, JNK, and p38 MAPK, in a dose and time-dependent manner in AGS. Z-VAD-fmk did not affect MAPK signaling induced by camptothecin suggesting that caspase signaling occurs downstream of MAPK signaling. Blocking of p38 MAPK, but not ERK1/2, resulted in partial inhibition of cell death and PARP cleavage by camptothecin in AGS. Taken together, MAPK signaling is associated with apoptotic cell death by camptothecin.  相似文献   

2.
Midkine is a heparin-binding growth factor that promotes cell attachment and process extension in undifferentiated bipolar CG-4 cells, an oligodendroglial precursor cell line. We found that CG-4 cells expressed a non-proteoglycan form of neuroglycan C, known as a part-time transmembrane proteoglycan. We demonstrated that neuroglycan C before or after chondroitinase ABC treatment bound to a midkine affinity column. Neuroglycan C lacking chondroitin sulfate chains was eluted with 0.5 m NaCl as a major fraction from the column. We confirmed that CG-4 cells expressed two isoforms of neuroglycan C, I, and III, by isolating cDNA. Among three functional domains of the extracellular part of neuroglycan C, the chondroitin sulfate attachment domain and acidic amino acid cluster box domain showed affinity for midkine, but the epidermal growth factor domain did not. Furthermore, cell surface neuroglycan C could be cross-linked with soluble midkine. Process extension on midkine-coated dishes was inhibited by either a monoclonal anti-neuroglycan C antibody C1 or a glutathione S-transferase-neuroglycan C fusion protein. Finally, stable transfectants of B104 neuroblastoma cells overexpressing neuroglycan C-I or neuroglycan C-III attached to the midkine substrate, spread well, and gave rise to cytoskeletal changes. Based on these results, we conclude that neuroglycan C is a novel component of midkine receptors involved in process elongation.  相似文献   

3.
LIGHT is a member of tumor necrosis factor (TNF) superfamily, and previous studies have indicated that in the presence of interferon-gamma (IFN-gamma), LIGHT through LTbetaR signaling can induce cell death with features unlike classic apoptosis. In present study, we investigated the mechanism of LIGHT/IFN-gamma-induced cell death in HT-29 cells, where the cell death was profoundly induced when sub-toxic concentrations of LIGHT and IFN-gamma were co-treated. LIGHT/IFN-gamma-induced cell death was accompanied by DNA fragmentation and slight LDH release. This effect was not affected by caspase, JNK nor cathepsin B inhibitors, but was partially prevented by p38 mitogen-activated protein kinase (MAPK) and poly (ADP-ribose) polymerase (PARP) inhibitors, and abolished by aurintricarboxylic acid (ATA), which is an inhibitor of endonuclease and STATs signaling of IFN-gamma. Immunobloting reveals that LIGHT/IFN-gamma could induce p38 MAPK activity, Bak and Fas expression, but down-regulate Mcl-1. Besides, LIGHT/IFN-gamma could not activate caspase-3 and -9, but decreased mitochondrial membrane potential. Although LIGHT could not affect IFN-gamma-induced STAT1 phosphorylation and transactivation activity, which was required for the sensitization of cell death, survival NF-kappaB signaling of LIGHT was inhibited by IFN-gamma. These data suggest that co-presence of LIGHT and IFN-gamma can induce an integrated interaction in signaling pathways, which lead to mitochondrial dysfunction and mix-type cell death, not involving caspase activation.  相似文献   

4.
The onset mechanism of proliferation in mitotically quiescent retinal pigment epithelium (RPE) cells is still obscure in humans and newts, although it can be a clinical target for manipulating both retinal diseases and regeneration. To address this issue, we investigated factors or signaling pathways involved in the first cell-cycle entry of RPE cells upon retinal injury using a newt retina-less eye-cup culture system in which the cells around the wound edge of the RPE exclusively enter the cell cycle. We found that MEK-ERK signaling is necessary for their cell-cycle entry, and signaling pathways whose activities can be modulated by heparin, such as Wnt-, Shh-, and thrombin-mediated pathways, are capable of regulating the cell-cycle entry. Furthermore, we found that the cells inside the RPE have low proliferation competence even in the presence of serum, suggesting inversely that a loss of cell-to-cell contact would allow the cells to enter the cell cycle.  相似文献   

5.
Staurosporine (STS) has been reported as not only a pro-apoptotic agent, but also a terminal differentiation inducer in several neuroblastoma cell lines. Here, we report involvement of amyloid precursor protein (APP) in a STS induced astrocytic differentiation of human neural progenitor cells (NT-2/D1). We found that STS-treated NT-2/D1 cells expressed astrocyte-specific glial fibrillary acidic protein (GFAP), aspartate transporter, and glutamate transporter-1 with a distinctive astrocytic morphology. STS treatment increased GFAP promoter activity and increased expression and secretion of APP in NT-2/D1 cell culture. Overexpressed APP enhanced GFAP promoter activity and expression of GFAP, while gene silencing of APP by RNA interference decreased GFAP expression. These results indicate involvement of APP in STS induced astrocytic differentiation of NT-2/D1 cells. Furthermore, suppression of ERK1/2 phosphorylation, which is known to regulate APP expression by a MEK1 inhibitor, PD098059, reduced both APP and GFAP expression in STS treated NT-2/D1 cells. Thus, STS may induce astrocytic differentiation of NT-2/D1 by increasing APP levels associate with activation of ERK pathway.  相似文献   

6.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in a variety of cellular responses. In the present study, we demonstrated that treatment of human adipose tissue-derived mesenchymal stem cells (hATSCs) with D-erythro-SPC resulted in apoptosis-like cell death, as demonstrated by decreased cell viability, DNA strand breaks, the increase of sub-G1 fraction, cytochrome c release into cytosol, and activation of caspase-3. In contrast, the exposure of hATSCs to L-threo-SPC did not induce the cell death, suggesting that the SPC-induced cell death was selective for the D-erythro-stereoisomer of SPC. The D-erythro-SPC-induced cell death was prevented by DEVD-CHO, a caspase-3 specific inhibitor, and Z-VAD-FMK, a general caspase inhibitor, suggesting that the SPC-induced cell death of hATSCs occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, D-erythro-SPC treatment stimulated the activation of mitogen-activated protein kinases, such as ERK and c-Jun NH2-terminal protein kinase (JNK), and the D-erythro-SPC-induced cell death was completely prevented by pretreatment with the MEK inhibitor, U0126, but not by pretreatment with the JNK inhibitor, SP600125, and the p38 MAPK inhibitor, SB202190, suggesting a specific involvement of ERK in the D-erythro-SPC-induced cell death. Pretreatment with U0126 attenuated the D-erythro-SPC-induced release of cytochrome c. From these results, we suggest that ERK is involved in the SPC-induced cell death of hATSC through stimulation of the cytochrome c/caspase-3-dependent pathway.  相似文献   

7.
On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.  相似文献   

8.
9.
The GTPase Rac controls signaling pathways often related to actin polymerization in various cell types. In T lymphocytes, Rac is activated by Vav, a major component of the multiprotein transduction complex associated to the TCR. Although profound signaling defects have been observed in Vav-deficient mice, a role of Rac in the corresponding early TCR signaling has not been tested directly. This question was investigated in Jurkat T cells transfected with either a dominant-negative (RacN17) or a constitutively active (RacV12) form of Rac. In T cells expressing either RacN17 or RacV12, the anti-CD3-induced Ca2+ response and production of inositol-1,4,5-trisphosphate were inhibited. The basal level of phosphatidylinositol-4,5-bisphosphate was not significantly diminished by Rac mutants. The major inhibitory effect of Rac mutants on Ca2+ signaling is exerted on the activity of phospholipase C-gamma and, before that, on the phosphorylation of ZAP-70 and of the linker molecule for activation of T cells, LAT. An anti-CD3-induced increase in actin polymerization was observed in control cells but not in cells transfected with a Rac mutant. In addition, latrunculin, which binds to monomeric actin, simultaneously inhibited basal and CD3-induced actin polymerization and Ca2+ signaling. These findings suggest a link between the effects exerted by Rac mutants on cortical actin polymerization and on TCR signaling. Rac cycling between its GTP- and GDP-bound states is necessary for this signaling. Alterations observed in early TCR-dependent signals suggest that Rac contributes to the assembly of the TCR-associated multiprotein transduction complex.  相似文献   

10.
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.  相似文献   

11.
Interstitial fluid flow, generated upon induced movement of extracellular fluid after mechanical loading, activates many signal transduction pathways in bone cells. The mechanisms of mechanobiology in bone tissue are still not clearly understood. Recently focal adhesion kinase (FAK) was shown to be involved in mechanotransduction in a number of cells. This study was designed to characterize the functional roles of FAK in mediating osteoblast response to mechanical steady-state fluid shear stress (FSS). We reported here that FSS (15 dynes/cm2) induced activation of FAK and formation of FAK·Grb2·Sos ternary complex in MG-63 cells, which was necessary for activation of the downstream mitogen-activated protein kinase pathway signaling molecules extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). Our results also showed that transfection of FAK (F397Y) plasmid, a negative mutant of FAK, blocked the increased expression of binding factor alpha 1, osterix, osteocalcin and alkaline phosphatase induced by FSS in MG-63 cells. These results demonstrate that FAK signaling is critical for FSS-induced activation of ERK and JNK, and for promotion of osteoblast differentiation and osteogenesis via its association with Grb2/Sos complex.  相似文献   

12.
The consequences of H(2)O(2)/Fe(2+)-induced oxidative stress on translocation of ethanolamine phosphoglyceride (EPG) and serine phosphoglyceride (SPG) were studied in an oligodendroglia-like cell line (OLN 93) following 3 days of supplementation with 0.1 mM docosahexaenoic acid (DHA) and a series of polar head group precursors, including N-monomethyl- and N,N-dimethylethanolamine at millimolar concentrations. Added DHA was predominantly esterified in EPG species and those cells enriched in DHA showed enhanced sensitivity to oxidative stress and eventually died by apoptosis. Co-supplements with ethanolamine and DHA resulted in a rapid, but transient, EPG translocation with a maximum at 30 min following stress, as characterized by a trinitrobenzenesulfonic acid reagent. There was no significant translocation of SPG as evidenced by annexin V binding. Unlike SPG, which is usually irreversibly translocated to subserve as a tag for phagocytosis, EPG acted as a signaling molecule with biphasic kinetic characteristics. N-Monomethyl- and N,N-dimethylethanolamine supplements reduced EPG synthesis, prevented its externalization and rescued cells from apoptotic death. Following stress, the fatty acid profile of the externalized EPG showed marked losses in polyunsaturated fatty acids and aldehydes compared with the remaining intracellular EPG. Prevention of EPG species selective translocation to the outer membrane leaflet by altering phospholipid asymmetry may be important in the mechanism of rescue from cell death.  相似文献   

13.
Organization and function of the Notch signaling pathway in Drosophila are best understood with respect to its role in the process of selection of neural progenitor cells. However, there is evidence that, besides neurogenesis, the Notch signaling pathway is involved in several other developmental processes, one of which is the selection of muscle progenitor cells. Thus, the number of these cells is increased in neurogenic mutants, and it has been proposed that muscle progenitor cells are selected from clusters of equivalent cells expressing genes of the achaete-scute gene complex (AS-C). Here, I present evidence for the participation of additional elements of the Notch signaling pathway in myogenesis. Gal4 mediated expression of a Notch variant, E(spl) and Hairless shows that the selection of muscle progenitor cells obeys principles apparently identical to those acting at the selection of neural progenitor cells.  相似文献   

14.
15.
Notch receptor plays a crucial role in proliferation and differentiation of many cell types. To elucidate the function of Notch signaling in osteogenesis, we transfected the constitutively active Notch1 (Notch intracellular domain, NICD) into two different osteoblastic mesenchymal cell lines, KusaA and KusaO, and examined the changes of their osteogenic potentials. In NICD stable transformants (KusaA(NICD) and KusaO(NICD)), osteogenic properties including alkaline phosphatase activity, expression of osteocalcin and type I collagen, and in vitro calcification were suppressed. Transient transfection of NICD attenuated the promoter activities of Cbfa1 and Ose2 element. KusaA was capable of forming trabecular bone-like tissues when injected into mouse abdomen, but this in vivo bone forming activity was significantly suppressed in KusaA(NICD). Osteoclasts were induced in the KusaA-derived bone-like tissues, but lacked in the KusaA(NICD)-derived tissues. These results suggest that Notch signaling suppresses the osteoblastic differentiation of mesenchymal progenitor cells.  相似文献   

16.
Interferon-gamma (IFNG) induces apoptotic cell death in bovine luteal cells, but the pathway(s) involved in this process are not well defined. Evidence supporting the involvement of an IFNG-inducible enzymatic pathway that degrades tryptophan in IFNG-induced death of bovine luteal cells is presented in this study. The IFNG-inducible enzyme indoleamine 2,3-dioxygenase (INDO) catalyzes the first step in a metabolic pathway that degrades tryptophan. In the first experiment, RT-PCR revealed the presence of INDO mRNA in luteal cells treated with IFNG, but not in untreated cells. To determine whether INDO participates in IFNG-induced death of bovine luteal cells, an experiment was performed to test the effect of 1-methyl-D-tryptophan (1-MT), an inhibitor of INDO, on IFNG-induced DNA fragmentation in luteal cells. Single-cell gel electrophoresis and microscopic image analysis revealed that 1-MT inhibited DNA fragmentation induced by IFNG. To determine whether supplementation of cell cultures with additional tryptophan could also protect luteal cells from IFNG-induced DNA fragmentation, luteal cells were cultured in the presence of IFNG, and L-tryptophan was added to cultures to achieve final concentrations that were 5-, 10-, or 25-fold higher than the concentration of L-tryptophan found in nonsupplemented culture medium. Supplementation of IFNG-treated luteal cell cultures with elevated concentrations of tryptophan also prevented IFNG-induced DNA fragmentation. We conclude that INDO participates in IFNG-induced death of bovine luteal cells, through a mechanism that involves degradation of tryptophan, thereby reducing tryptophan concentrations to a point insufficient to meet luteal cells needs.  相似文献   

17.
18.
19.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

20.
The microtubule cytoskeleton supports cellular morphogenesis and polar growth, but the underlying mechanisms are not understood. In a screen for morphology mutants defective in microtubule organization in the fungus Ustilago maydis, we identified eca1 that encodes a sarcoplasmic/endoplasmic calcium ATPase. Eca1 resides in the endoplasmic reticulum and restores growth of a yeast mutant defective in calcium homeostasis. Deletion of eca1 resulted in elevated cytosolic calcium levels and a severe growth and morphology defect. While F-actin and myosin V distribution is unaffected, Deltaeca1 mutants contain longer and disorganized microtubules that show increased rescue and reduced catastrophe frequencies. Morphology can be restored by inhibition of Ca(2+)/calmodulin-dependent kinases or destabilizing microtubules, indicating that calcium-dependent alterations in dynamic instability are a major cause of the growth defect. Interestingly, dynein mutants show virtually identical changes in microtubule dynamics and dynein-dependent ER motility was drastically decreased in Deltaeca1. This indicates a connection between calcium signaling, dynein, and microtubule organization in morphogenesis of U. maydis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号