首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory assays were performed with detached milk stage maize ( Zea mays L.) ears and dusky sap beetles ( Carpophilus lugubris Murray) carrying the Kodiak Concentrate formulation of the bacterium, Bacillus subtilis (Ehrenberg) Cohn. After 1 day of exposure to the B. subtilis- contaminated C. lugubris , the colonization of mechanically damaged kernels by Aspergillus flavus Link ex. Fries was reduced from 82% (if the A. flavus was inoculated first) to 41% (if B. subtilis was added by C. lugubris before the A. flavus ). Field cage studies were performed with an autoinoculative device containing B. subtilis into which C. lugubris beetles were introduced. C. lugubris -dispersed B. subtilis reduced visible A. flavus colonization by 97% when the A. flavus was added to purposely damaged maize ears 4 days after C. lugubris were released from the autoinoculator. In 1993 field studies, none of the purposely damaged ears that allowed access to C. lugubris beetles emerging from autoinoculators containing B. subtilis had visible sporulating A. flavus compared with 92% of ears that did not allow access of C. lugubris but that subsequently had the A. flavus inoculum added. In 1994 field studies, 70% of the ears that excluded C. lugubris had aflatoxin levels greater than 200 ppb in purposely damaged kernels, as opposed to less than 10% of kernels that permitted access by natural populations of C. lugubris that probably acquired B. subtilis from a single autoinoculator. Aflatoxin levels in these ears were negatively correlated with the presence of both B. subtilis and C. lugubris . The B. subtilis was widely dispersed over a 16-ha area as indicated by maize ear and C. lugubris trap sampling. These studies indicate that autoinoculative dispersal of B. subtilis by natural populations of C. lugubris is a potentially useful means for reducing A. flavus and aflatoxin in maize.  相似文献   

2.
Rhizoctonia damping-off caused by Rhizoctonia solani Kühn, is one of the most damaging sugar beet diseases. It causes serious economic damage wherever sugar beets are grown. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Suppression of damping-off disease caused by R. solani was carried out by four isolates of Bacillus subtilis (Ehrenberg) Cohn as well as three isolates of each of Trichoderma harzianum Rifai and Trichoderma hamatum (Bonord.) Bainier. The effect of Bacillus and Trichoderma isolates against R. solani was investigated in vitro and tested on sugar beet plants under greenhouse conditions. Isolates of Bacillus and Trichoderma were able to inhibit the growth of R. solani in dual culture. Furthermore, Trichoderma isolates gave high antagonistic effect than isolates of B. subtilis. Under greenhouse conditions, coating seeds by T. harzianum and B. subtilis separately, reduced seedling damping-off significantly. However, applications of T. harzianum increased the percentage of surviving plants more than B. subtilis in comparison to control. The obtained results indicate that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in sugar beet damping-off and should be harnessed for further biocontrol applications.  相似文献   

3.
Prevalence of entomopathogenic fungi was studied in overwintering ground beetles (Col.: Carabidae) and rove beetles (Col.: Staphylinidae) collected from fields of lucerne, white cabbage and white cabbage undersown with white clover. In general infection levels in adult ground beetles and rove beetles were low (Carabidae: max. 7.6%,Staphylinidae: max. 7.0%). In comparison, prevalence of entomopathogenic fungi in carabid larvae was high (19–50%). At one study site an epizootic ofBeauveria bassiana was observed, infecting 67% of the staphylinidAnotylus rugosus and 37% of the staphylinidGyrohypnus angustatus. Beauveria bassiana was the predominant fungus isolated from ground beetles and rove beetles from all studied sites. Other fungal species included the hyphomycetesMetarhizium anisopliae, Paecilomyces farinosus andVerticillium lecanii as well asZoophthora radicans andZoophthora philonthi (Zygomycetes: Entomophthorales). Two individuals ofAnotylus rugosus were found to have a dual infection ofZoophthora philonthi andBeauveria bassiana.
Résumé La présence de champignons entomopathogènes a été recherchée chez des carabes (Col.: Carabidae) et des staphylins (Col.: Staphylinidae) récoltés dans des champs de luzerne, de chou et d'une culture mélangée chou-trèfle blanc. Chez les adultes, le taux d'infection dans les deux groupes d'insectes est en général très faible (Carabidae: max. 7,6%, Staphylinidae: max. 7%). Chez les larves de carabes par contre, le taux d'infection par les champignons est élevé (19–50%). Sur l'un des sites de l'étude, une épizootie àBeauveria bassiana a été observée, l'infection portant sur 67% des individus récoltés appartenant à l'espèceAnotylus rugosus et 37% desGyrohypnus angustatus. B. bassiana est le champignon prédominant isolé à partir des coléoptères de tous les sites étudiés. D'autres espèces fongiques ont été relevées: ce sont les hyphomycètesMetarhizium anisopliae, Paecilomyces farinosus etVerticillium lecanii ainsi queZoophthora radicans etZoophthora philonthi. Deux individus d'A. rugosus ont été retrouvés infectés à la fois parErynia etB. bassiana.
  相似文献   

4.
The corn rootworm complex is the most damaging insect pest of corn (Zea mays L.). This study was conducted to determine the efficacy of whorl and pollen-shed stage applications of a granular formulation of Beauveria bassiana (Balsamo) Vuillemin for control of adult western corn rootworm (Diabrotica virgifera virgifera Le Conte). The effect of application time (whorl-stage, pollen-shed) and plant surface exposed (leaves and leaf collars; silks; leaves, leaf collars, and silks) on level of beetle fungal infection were investigated. In addition, the number of colony forming units of B. bassiana in the corn leaf collar area was quantified. In the three years (1998–2000) of the study, application of B. bassiana at whorl-stage did not significantly increase beetle fungal infection. Beauveria bassiana applied to plants at pollen-shed in 1998 resulted in a significant increase in beetle infection with 51% of beetles from treated plants infected and 6.0% from control plants. Similar applications at pollen-shed in 1999 and 2000 resulted in very low infection levels. Beauveria bassiana application at pollen-shed stage significantly increased the number of colony forming units per leaf collar during all years of the study. Beetle infection with B. bassiana did not differ consistently among plant surface to which beetles were exposed for either application. Increased fungal load in leaf collars was not correlated with increased levels of adult infection. Increased rates of B. bassiana and application when beetles are present on the plants are likely needed to significantly increase infection rates.  相似文献   

5.
We evaluated the use of fluorescent powders for tracking dispersal by the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), of Beauveria bassiana isolates from an autocontamination device. Neither of the two DayGlow powders tested (Arc Yellow and Aurora Pink) interfered with fungal germination or growth, nor did they affect survival of beetles in the laboratory, or affect virulence of the fungus. The powders persisted at least 10 days out-of-doors on dead beetles in sticky band traps, and at least 14 days on pouches inside autocontamination traps. During field trials of autocontamination traps with powder-dusted fungal pouches in southwestern Ontario, 8.0% of the 4010 beetles captured in green prism and sticky-band traps were positive for fluorescent powders. Only half (46.2–57.8%) of the powder-positive beetles actually carried viable fungal conidia, as determined by plating of beetle rinses, possibly as a result of patchy growth of fungal isolates and reduced conidia production on pouch surfaces during the 16-day trapping experiment. The presence of viable conidia (either one or both isolates) on about 10% of beetles that did not carry any visible powder particles may be an indication of horizontal transmission of the fungus by beetles that had visited the autocontamination traps.  相似文献   

6.
Dissemination of microbial biocontrol agents via predators may have advantages for safe spore dispersal to targeted pests with the added benefit of predation. A laboratory study was conducted to test the target-oriented dissemination of conidia of Beauveria bassiana using larvae of both the multicoloured Asian lady beetle (Harmonia axyridis) and common green lacewing (Chrysoperla carnea) for control of aphids. Maximum dry conidial attachment occurred within approximately 7 min after exposure. After release of the treated predators on leaves of Chinese cabbage, within 12 hours lacewing larvae dispersed 89% of the attached conidia while Asian lady beetles dispersed 93%. Both predators dispersed conidia up to 2.4 m from the release site. Leaf disk bioassays were conducted to compare two application methods; the dissemination of conidia of B. bassiana by predators and the direct application of conidial suspensions. Mortality in sprayed aphids was 91±2.1% compared to 88±2.1 and 84±4.2%, respectively, when conidia were disseminated by lacewings and lady beetles. Predation was not affected in treated lacewing larvae whereas there was a 20% reduction in predation by lady beetle larvae. It appears that B. bassiana can be effectively delivered using certain insect predators.  相似文献   

7.
Abstract

The efficiency of two biocontrol agents (Trichoderma harzianum NB and Bacillus subtilis NB) and two commercial biocides (Plant Guard and Rhizo-N) in controlling Fusarium root rot disease on some citrus rootstocks was evaluated under artificially infested soil in green house.

Fusrium root rot on citrus rootstocks seedlings i.e. sour orange (SO), volkamer lime (VL), rangpur lime (RP) and cleopatra mandarin (CL) was successfully controlled by dipping the root system of such seedlings in water suspensions of each biological treatment i.e. Trichoderma harzianum (spore suspension 5×106 spore/ml), Bacillus subtilis (cell suspension 8×107 cell/ml), Plant Guard (3 g/l) and Rhizo-N (4 g/l), then transplanted into artificially infested soil with Fusarium solani and drenched with enough water suspension of such biological treatments. Plant Guard (3 g/l) and Rhizo-N (4 g/l) were highly effective treatments in decreasing infection and severity of the disease, Fusarium density in rhizosphere soil and colonization of Fusarium solani in the roots of all tested seedlings.

Meanwhile, root dipping or soil drenching with the same treatments individually gave the least effect in reducing root rot incidenceon all tested rootstocks compared with application of the two methods together.

It should be noted that using biocontrol agents and commercial biocides could be successfully used in controlling root rot pathogens on citrus in commercial greenhouses or under field conditions before transplanting in new reclaimed lands in the desert.  相似文献   

8.
Direct plant uptake of metals bound to chelating agents has important implications for metal uptake and the free-ion activity model. Uptake of hydrophilic solutes such as metal–EDTA complexes is believed to occur via bypass apoplastic flow, but many questions remain about the relative importance and selectivity of this pathway. In this study, Brassica juncea (Indian mustard) plants grown in solution- and sand-culture conditions were exposed to metal–EDTA complexes and to PTS, a hydrophilic fluorescent dye previously used as a tracer of apoplastic flow. The results suggest that there are two general phases of solute uptake. Under normal conditions, xylem sap solute concentrations are relatively low (i.e., <0.5% of concentration in solution) and there is a high degree of selectivity among different solutes, while under conditions of stress, xylem sap concentrations are significantly higher (i.e., >3% of concentration in solution) and the selectivity among solutes is less. In healthy plants, xylem sap metal–EDTA concentrations were generally an order of magnitude higher than those of PTS and differences among complexes were observed, with CdEDTA2− exhibiting slightly higher xylem sap concentrations than PbEDTA2− or FeEDTA. Metal–EDTA complexes were found to dominate xylem sap metal speciation and the fraction of metal in xylem sap present as metal–EDTA was greater for non-nutrient metals (Pb, Cd) than for the nutrient metal Fe. Despite differences in root morphology between plants grown under solution- and sand-culture conditions, uptake of solutes was similar under both sets of growth conditions.  相似文献   

9.
The fungal entomopathogen Beauveria bassiana became established as an endophyte in coffee seedlings grown in vitro and inoculated with B. bassiana suspensions in the radicle. The fungus was recovered as an endophyte 30 and 60 days postinoculation, from stems, leaves, and roots, and at 60 days postinoculation one of the isolates was also recovered as an epiphyte. Fusarium sp., Rhodotorula sp., and four bacterial morpho-species were also detected, indicating these were present as endophytes in the seed.  相似文献   

10.
The alien moth Epiblema sugii (Lepidoptera: Tortricidae) induces stem galls on an invasive alien weed, Ambrosia trifida. During summer, along riverbanks in central Japan, the native insects Protaetia brevitarsis, P. orientalis submarumorea (Coleoptera: Scarabaeidae: Cetoniinae), and Camponotus vitiosus (Hymenoptera: Formicidae) feed on the sap exuded from the galls. The cetoniine beetles are highly aggregated among the galls and make wounds on the galls to facilitate sap exudation. Feeding on gall sap may be beneficial to the beetles due to the efficient intake of water and sugar, and the beetles’ inflicting wounds and feeding on the sap seem to have little effect on the gallers. This is a unique finding, where alien plant–galler interaction provides a feeding site for native insects.  相似文献   

11.
Concerns surrounding the contamination of infrastructure and equipment with biowarfare agents have led to the development of antimicrobial surfaces/coatings that are designed to “self-sterilize.” Surfaces will likely be contaminated via an aerosol exposure and thus antimicrobial efficacy measurements should also be performed using biological aerosols. Standard methods that use microbial agents suspended in aqueous buffers may provide misleading results that overestimate the performance of the surface. A settling chamber is the most common instrument for applying biological aerosols to surfaces. However, settling chambers have some drawbacks (e.g., slow loading times, large footprint, variable loading, etc.) that make them undesirable for many applications. We have developed a Dry Aerosol Deposition Device (DADD) that uses impaction rather than settling to load surfaces with biological aerosols. The use of impaction allows for rapid and highly reproducible loading of microorganisms onto surfaces. We have demonstrated that the DADD can deliver both Bacillus atrophaeus spores and Staphylococcus aureus vegetative cells to glass coupons at concentrations exceeding 1 × 104 CFU/cm2. The average coefficient of variation (CV) for sample-to-sample loading within an experiment was 13.6% for spores and 6.1% for S. aureus cells. The DADD is also a relatively simple and inexpensive device that can easily be contained within a 4-foot biological safety cabinet.  相似文献   

12.
Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10–0.8 (g/mg min−1) for Aspergillus niger and 8–0.4 (g/mg min−1) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.  相似文献   

13.
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field‐collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective.  相似文献   

14.
Corrosion causes dramatic economic loss. Currently widely used corrosion control strategies have disadvantages of being expensive, subject to environmental restrictions, and sometimes inefficient. Studies show that microbial corrosion inhibition is actually a common phenomenon. The present review summarizes recent progress in this novel strategy: corrosion control using beneficial bacteria biofilms. The possible mechanisms may involve: (1) removal of corrosive agents (such as oxygen) by bacterial physiological activities (e.g., aerobic respiration), (2) growth inhibition of corrosion-causing bacteria by antimicrobials generated within biofilms [e.g., sulfate-reducing bacteria (SRB) corrosion inhibition by gramicidin S-producing Bacillus brevis biofilm], (3) generation of protective layer by biofilms (e.g., Bacillus licheniformis biofilm produces on aluminum surface a sticky protective layer of γ-polyglutamate). Successful utilization of this novel strategy relies on advances in study at the interface of corrosion engineering and biofilm biology.  相似文献   

15.
Field experiments were carried out with Indian mustard (Brassica juncea L. Cv RLM 1359) to investigate the influence of biocontrol agents on seeds from plants infected with Alternaria blight. The biocontrol agents viz, Trichoderma harzianum, Pseudomonas fluorescens and Bacillus subtilis were applied as seed treatment/seed treatment coupled with spray on 30 and 60 days after sowing of seeds in experimental fields. The plants treated with different biocontrol agents were more developed than non-treated plants throughout the experiment. Biochemical analysis revealed that application of biocontrol agents resulted in increase in lipid and protein content in seeds from treated plants. The proportion of various lipidic fractions i.e. phospholipids, glycolipids and sterol content in seeds increased with a corresponding decrease in total glycerides. The proportion of 18:3, 20:1 and 22:1 fatty acids increased while that of 18:1 and 18:2 fatty acids decreased in seeds with application of biocontrol agents. There were both qualitative and quantitative differences in the banding patterns of albumin and globulin proteins after application of biocontrol agents. The data suggested that biochemical alterations in the host induced by treatment with biocontrol agents could be associated with defence mechanisms and enhanced growth of the plant.  相似文献   

16.
Sun M  Liu X 《Mycopathologia》2006,161(5):295-305
Thirty-three carbon sources were evaluated for their effects on spore germination, hyphal growth and sporulation of 11 fungal biocontrol agents, i.e. the nematophagous fungi Paecilomyces lilacinus, Pochonia chlamydosporia, Hirsutella rhossiliensis, H. minnesotensis and Arkansas Fungus 18, the entomopathogenic fungi Lecanicillium lecanii, Beauveria bassiana and Metarhizium anisopliae, and the mycoparasitic fungus Trichoderma viride. Variations in carbon requirements were found among the fungal species or strains tested. All strains studied except for T. viride grew on most carbon sources, although B. bassiana had more fastidious requirements for spore germination. Monosaccharides and disaccharides were suitable for fungal growth. For most isolates, d-glucose, d-mannose, sucrose and trehalose were superior to pectin and soluble starch among the polysaccharides and lactic acid among the organic acids. Both ethanol and methanol could accelerate growth of most isolates but not biomass. d-mannose, d-fructose and d-xylose were excellent carbon sources for sporulation, while d-glucose, sucrose, cellobiose, trehalose, chitin, dextrin, gelatin and lactic acid were better for some isolates. Neither sorbic acid nor linoleic acid could be utilized as a single carbon source. These findings provided a better understanding of the nutritional requirements of different fungal biocontrol agents that can benefit the mass production process.  相似文献   

17.
A preliminary virulence test of four fungal isolates, Beauveria bassiana IMI 382302, Beauveria bassiana IMI 386701, Trichoderma harzianum T24 and Aspergillus flavus Link against larvae of Spodoptera littoralis was performed. The most effective isolates against larvae of S. littoralis were B. bassiana 302 and T. harzianum T24, which also showed the lower percentage of pupation compared with the other two isolates under the same conditions of treatments. Three concentrations (1 × 106, 1 × 107 and 1 × 108 ml?1) of the aqueous conidial suspension of the four tested isolates were carried out against both larval and pupal stages of S. littoralis within five days post-treatment. T. harzianum T24 showed 80% larval mortality only when applied at the highest conidial concentration, while A. flavus showed 100% pupal mortality only, at all of its conidial concentrations. However, B. bassiana IMI 382302 showed relatively high dose-dependant larval and pupal mortalities, while strain IMI 386701 of B. bassiana showed a very weak mortality against pupae at higher concentrations, and no virulence against larvae was recorded. Enzymatic and antibiosis bioassays of the four fungal isolates showed relatively high activities against Fusarium spp. for most of the tested isolates. Clear zone of enzyme activity on agar plates proportionally increased with increasing the concentration of enzyme substrate and prolongation of the incubation period. Mtabolites produced in the agar culture inhibited the growth of Fusarium spp. and the productivity differed greatly among isolates or strains of the same isolate. Volatile and non-volatile compounds produced by A. flavus Link showed a higher inhibition activity against Fusarium spp. compared with the other fungal isolates. The humoral antifungal response of insect host is relatively high compared to the anti-bacterial one. Injection of larvae with the immune sensitive bacteria Micrococcus luteus (5 × 103 bacteria/larva) showed a detectable humoral response by 2 h, peaked around 12 h and became hardly detectable by 24 h post-injection. Injection of larvae with conidial suspension (5 × 103 conidia/larva) from each of the fungal isolates showed humoral antifungal activity against B. bassiana IMI 386701 and A. flavus only. This activity was detectable by 12 h, peaked around 36 h and became hardly detectable by 48 h post-injection. Although the humoral antifungal response was started slowly compared to the antibacterial one, it lasted for longer and enabled larvae to withstand the infection with these immune-sensitive fungal strains. No humoral activity was detected against B. bassiana IMI 382302, although however, weak activity was detected against T. harzianum T24 only at the low conidial concentration but not at the higher one (1 × 108 ml?1). Thus, this study concludes that larvae of S. littoralis showed immune-dependant sensitivity to T. harzianum T24 and B. bassiana IMI 382302. Therefore, this study may recommend these two fungal isolates as mycoinsecticides in the battle against cotton leaf worm in Egypt. Hence, they have been selected for future comprehensive bioassays in the laboratory under conditions similar to that in the field. This, in fact, may help for developing effective mycoinsecticides against this pest. Penetration mechanims of insect cuticle by entomopathogenic fungi will be discussed.  相似文献   

18.
Meloidoyne incognita (root-knot nematode) and Fusarium solani (root-rot pathogen) were the common soil-borne pathogens and cause severe damage to bean plants in newly reclaimed sandy soil in Nubaryia district, Behera Governorate, Egypt. The antagonistic effects of Trichoderma album and Trichoderma viride as well as three commercial products namely Rhizo-N® (Bacillus subtilis), Bio-Arc® 6% (Bacillus megaterium) and Bio-Zeid® 2.5% (T. album) were tested against M. incognita and F. solani under naturally infected field conditions. T. album and T. viride highly reduced the frequency (%) population of pathogenic fungi such as Fusarium spp., F. solani and Rhizoctonia spp., than the commercial products. Results indicated that all the tested bio-control agents reduced, significantly, the nematode criteria as evidenced by the number of juvenile (J2) in soil and number of galls and egg masses on roots of common bean and Fusarium root-rot incidence (%). Rhizo-N® highly reduced the number of J2 in soil, while T. album was the best in reducing the number of galls and egg masses in roots. The bio-control agents also increased the plant growth parameters of common bean plants i.e. plant height, plant weight, branch no./plant, pods no./plant, pod weight/plant, pod weight, seeds no./plant, fresh seeds weight/pod, dry seeds weight/pod and dry weight of 100 seeds.  相似文献   

19.
20.
Targeted gene replacement via homologous recombination (HR) is a conventional approach for the analysis of gene function. However, this event is rare in Beauveria bassiana, which hampers efficient functional analysis in this widely used entomopathogenic fungus. To improve homologous recombination frequency in B. bassiana, we investigated the effect of the ratio of homologous sequence to non-homologous sequence (HS/NHS) in gene disruption cassette upon the HR frequency by two gene loci BbNtl and BbThi, using the herpes simplex virus thymidine kinase as a negative selectable marker against ectopic transformants. Our data revealed that an increase of the ratio of HS/NHS achieved by either extending homologous sequence or decreasing non-homologous sequence could improve HR frequency in B. bassiana. We determined empirically that (1) at least 700 bp of homology to both sides of a target gene was needed to get a reasonable number of disruptants, e.g., 6.7‰ to 13.3‰ in B. bassiana. (2) When the ratio of HS/NHS was above 0.8, an acceptable HR frequency could be achieved for gene replacement in B. bassiana, while when the ratio was below 0.3, few gene disrupted mutants were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号