首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible existence of a malonate-sensitive dicarboxylate-mediated electron shuttle between microsomal NAD-linked fatty acid α-oxidation and the mitochondrial electron transport chain in uncoupled fresh potato slices was investigated. Uncoupled slice respiration is inhibited by benzylmalonate and butylmalonate, inhibitors of dicarboxylate transport into mitochondria. Uncoupled slice respiration is also inhibited by rotenone, an indication of intramitochondrial NADH oxidation. Since fatty acid α-oxidation per se is rotenone insensitive, rotenone and benzylmalonate inhibition of the oxidation of carboxyl-labeled myristate in slices points to a dicarboxylic acid shuttle linking microsomal fatty acid a-oxidation with intramitochondrial NADH dehydrogenase.
Malonute inhibits both respiration and 14CO2, release from carboxyl-labeled myristate in fresh uncoupled slices, as do inhibitors of dicarboxylate transport. Mitochondrial studies show that malonate inhibits malate oxidation but not malate dehydrogenase per se. Furthermore, malonate inhibits malate transport more severely than malate oxidation. Accordingly, mulonate inhibition of uncoupled slice respiration in the absence of tricarboxylic acid cycle activity is attributed to its interference with mitochondrial malate transport, and its consequent curtailment of a putative malate-OAA shuttle linked to cytosolic NAD-mediated fatty acid α-oxidation.  相似文献   

2.
Phthalonate was found to inhibit the following parameters in higher plant mitochondria; glutamate and isocitrate oxidation, swelling in ammonium citrate and glutamate (but not malate), citrate-isocitrate exchange, oxalacetate entry and efflux, and NAD-linked malic enzyme. Phthalonate had little effect on malate, NADH, or oxoglutarate oxidation, nor on malate, isocitrate, or glutamate dehydrogenases. The results indicate that phthalonate is an inhibitor of oxalacetate, glutamate, and citrate transport in plant mitochondria, but not of oxoglutarate or dicarboxylate transport.  相似文献   

3.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

4.
Calcium uptake into filipin-treated bovine spermatozoa is completely inhibited by the uncoupler CCCP or by ruthenium red. Both Pi and mitochondrial substrates are required to obtain the maximal rate of calcium uptake into the sperm mitochondria. Bicarbonate and other anions such as lactate, acetate or beta-hydroxybutyrate do not support a high rate of calcium uptake. There are significant differences among various mitochondrial substrates in supporting calcium uptake. The best substrates are durohydroquinone, alpha-glycerophosphate and lactate. Pyruvate is a relatively poor substrate, and its rate can be greatly enhanced by malate or succinate but not by oxalacetate or lactate. This stimulation is blocked by the dicarboxylate translocase inhibitor, butylmalonate and can be mimiced by the non-metabolized substrate D-malate. The Ka for pyruvate was found to be 17 microM and 67 microM in the presence and absence of L-malate, respectively. The Ka for L-malate is 0.12 mM. It is suggested that in addition to the known pyruvate/lactate translocase there is a second translocase for pyruvate which is malate/succinate-dependent and does not transport lactate. In the presence of succinate, glutamate stimulates calcium uptake 3-fold, and this effect is not inhibited by rotenone. In the presence of glutamate plus malate or oxalacetate there is only an additive effect. It is suggested that glutamate stimulates succinate transport and/or oxidation in bovine sperm mitochondria. The alpha-hydroxybutyrate is almost as good as lactate in supporting calcium uptake. Since the alpha-keto product is not further metabolized in the citric acid cycle, it is suggested that lactate can supply the mitochondrial needs for NADH from its oxidation to pyruvate by the sperm lactate dehydrogenase x. Thus, when there is sufficient lactate in the sperm mitochondria, pyruvate need not be further metabolized in the citric acid cycle in order to supply more NADH.  相似文献   

5.
The mitochondrial transporter, the aspartate/glutamate carrier (AGC), is a necessary component of the malate/aspartate cycle, which promotes the transfer into mitochondria of reducing equivalents generated in the cytosol during glycolysis. Without transfer of cytosolic reducing equivalents into mitochondria, neither glucose nor lactate can be completely oxidized. In the present study, immunohistochemistry was used to demonstrate the absence of AGC from retinal glia (Müller cells), but its presence in neurons and photoreceptor cells. To determine the influence of the absence of AGC on sources of ATP for glutamate neurotransmission, neurotransmission was estimated in both light- and dark-adapted retinas by measuring flux through the glutamate/glutamine cycle and the effect of light on ATP-generating reactions. Neurotransmission was 80% faster in the dark as expected, because photoreceptors become depolarized in the dark and this depolarization induces release of excitatory glutamate neurotransmitter. Oxidation of [U-14C]glucose, [1-14C]lactate, and [1-14C]pyruvate in light- and dark-adapted excised retinas was estimated by collecting 14CO2. Neither glucose nor lactate oxidation that require participation of the malate/aspartate shuttle increased in the dark, but pyruvate oxidation that does not require the malate/aspartate shuttle increased to 36% in the dark. Aerobic glycolysis was estimated by measuring the rate of lactate appearance. Glycolysis was 37% faster in the dark. It appears that in the retina, ATP consumed during glutamatergic neurotransmission is replenished by ATP generated glycolytically within the retinal Müller cells and that oxidation of glucose within the Müller cells does not occur or occurs only slowly.  相似文献   

6.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

7.
The mitochondrial dicarboxylate carrier has been substantially purified from rat liver mitoplasts by extraction with Triton X-114 in the presence of cardiolipin followed by chromatography on hydroxylapatite. Upon incorporation of the hydroxylapatite eluate into phospholipid vesicles, an n-butylmalonate-sensitive malonate/malate exchange has been demonstrated. This exchange activity is enhanced 226-fold relative to the starting material (i.e. detergent-extracted mitoplasts). Silver-stained sodium dodecyl sulfate-polyacrylamide gradient gels verify the high purity of this fraction relative to the starting material. Nonetheless, the banding pattern indicates that several protein species are still present. As isolated, the dicarboxylate transporter is rather unstable but can be stabilized either by the addition of 10% ethylene glycol and subsequent storage at -20 degrees C or by incorporation into phospholipid vesicles in the presence of malate followed by freezing in liquid nitrogen. Such proteoliposomes catalyze a [14C]malonate uptake which is characterized by a first order rate constant of 1.02 min-1 and a t 1/2 of 41 s. This uptake can be inhibited by dicarboxylates (e.g. succinate, malate, unlabeled malonate) but not by either alpha-ketoglutarate or by tricarboxylates (e.g. citrate, threo-Ds-isocitrate). Furthermore, the reconstituted malonate transport is dependent on internal malate and can be inhibited by n-butylmalonate, mersalyl, p-chloromercuribenzoate, and Pi, but not by N-ethylmaleimide. It is concluded that this highly purified fraction contains a reconstitutively active dicarboxylate transporter which, based on its substrate specificity and inhibitor sensitivity, appears to be identical to the native dicarboxylate transport system found in intact rat liver mitochondria.  相似文献   

8.
Transport and metabolism of dicarboxylates may be important in the glial-neuronal metabolic interplay. Further, exogenous dicarboxylates have been suggested as cerebral energy substrates. After intrastriatal injection of [(14) C]fumarate or [(14) C]malate, glutamine attained a specific activity 4.1 and 2.6 times higher than that of glutamate, respectively, indicating predominantly glial uptake of these four-carbon dicarboxylates. In contrast, the three-carbon dicarboxylate [(14) C]malonate gave a specific activity in glutamate which was approximately five times higher than that of glutamine, indicating neuronal uptake of malonate. Therefore, neurones and glia take up different types of dicarboxylates, probably by different transport mechanisms. Labelling of alanine from [(14) C]fumarate and [(14) C]malate demonstrated extensive malate decarboxylation, presumably in glia. Intravenous injection of 75 micromol [U-(13) C]fumarate rapidly led to high concentrations of [U-(13) C]fumarate and [U-(13) C]malate in serum, but neither substrate labelled cerebral metabolites as determined by (13) C NMR spectroscopy. Only after conversion of [U-(13) C]fumarate into serum glucose was there (13) C-labelling of cerebral metabolites, and only at <10% of that obtained with 75 micromol [3-(13) C]lactate or [2-(13) C]acetate. These findings suggest a very low transport capacity for four-carbon dicarboxylates across the blood-brain barrier and rule out a role for exogenous fumarate as a cerebral energy substrate.  相似文献   

9.
Rapid direct conversion of exogenously supplied [14C]aspartate to [14C] asparagine and to tricarboxylic cycle acids was observed in alfalfa (Medicago sativa L.) nodules. Aspartate aminotransferase activity readily converted carbon from exogenously applied [14C]aspartate into the tricarboxylic acid cycle with subsequent conversion to the organic acids malate, succinate, and fumarate. Aminooxyacetate, an inhibitor of aminotransferase activity, reduced the flow of carbon from [14C]aspartate into tricarboxylic cycle acids and decreased 14CO2 evolution by 99%. Concurrently, maximum conversion of aspartate to asparagine was observed in aminooxyacetate treated nodules (30 nanomoles asparagine per gram fresh weight per hour. Metabolism of [14C]aspartate and distribution of nodulefixed 14CO2 suggest that two pools of aspartate occur in alfalfa nodules: (a) one involved in asparagine biosynthesis, and (b) another supplying a malate/aspartate shuttle. Conversion of [14C]aspartate to [14C]asparagine was not inhibited by methionine sulfoximine, a glutamine synthetase inhibitor, or azaserine, a glutmate synthetase, inhibitor. The data did not indicate that asparagine biosynthesis in alfalfa nodules has an absolute requirement for glutamine. Radioactivity in the xylem sap, derived from nodule 14CO2 fixation, was markedly decreased by treating nodulated roots with aminooxyacetate, methionine sulfoximine, and azaserine. Inhibitors decreased the [14C]aspartate and [14]asparagine content of xylem sap by greater than 80% and reduced the total amino nitrogen content of xylem sap (including nonradiolabeled amino acids) by 50 to 80%. Asparagine biosynthesis in alfalfa nodules and transport in xylem sap are dependent upon continued aminotransferase activity and an uninterrupted assimilation of ammonia via the glutamine synthetase/glutamate synthase pathway. Continued assimilation of ammonia apparently appears crucial to continued root nodule CO2 fixation in alfalfa.  相似文献   

10.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

11.
1. Pyruvate strongly inhibited aspartate production by mitochondria isolated from Ehrlich ascites-tumour cells, and rat kidney and liver respiring in the presence of glutamine or glutamate; the production of (14)CO(2) from l-[U-(14)C]glutamine was not inhibited though that from l-[U-(14)C]glutamate was inhibited by more than 50%. 2. Inhibition of aspartate production during glutamine oxidation by intact Ehrlich ascites-tumour cells in the presence of glucose was not accompanied by inhibition of CO(2) production. 3. The addition of amino-oxyacetate, which almost completely suppressed aspartate production, did not inhibit the respiration of the mitochondria in the presence of glutamine, though the respiration in the presence of glutamate was inhibited. 4. Glutamate stimulated the respiration of kidney mitochondria in the presence of glutamine, but the production of aspartate was the same as that in the presence of glutamate alone. 5. The results suggest that the oxidation of glutamate produced by the activity of mitochondrial glutaminase can proceed almost completely through the glutamate dehydrogenase pathway if the transamination pathway is inhibited. This indicates that the oxidation of glutamate is not limited by a high [NADPH]/[NADP(+)] ratio. 6. It is suggested that under physiological conditions the transamination pathway is a less favourable route for the oxidation of glutamate (produced by hydrolysis of glutamine) in Ehrlich ascites-tumour cells, and perhaps also kidney, than the glutamate dehydrogenase pathway, as the production of acetyl-CoA strongly inhibits the first mechanism. The predominance of the transamination pathway in the oxidation of glutamate by isolated mitochondria can be explained by a restricted permeability of the inner mitochondrial membrane to glutamate and by a more favourable location of glutamate-oxaloacetate transaminase compared with that of glutamate dehydrogenase.  相似文献   

12.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

13.
Acetate assimilation pathway of Methanosarcina barkeri.   总被引:18,自引:11,他引:7       下载免费PDF全文
The pathway of acetate assimilation in Methanosarcina barkeri was determined from analysis of the position of label in alanine, aspartate, and glutamate formed in cells grown in the presence of [14C]acetate and by measurement of enzyme activities in cell extracts. The specific radioactivity of glutamate from cells grown on [1-14C]- or [2-14C]acetate was approximately twice that of aspartate. The methyl and carboxyl carbons of acetate were incorporated into aspartate and glutamate to similar extents. Degradation studies revealed that acetate was not significantly incorporated into the C1 of alanine, C1 or C4 of aspartate, or C1 of glutamate. The C5 of glutamate, however, was partially derived from the carboxyl carbon of acetate. Cell extracts were found to contain the following enzyme activities, in nanomoles per minute per milligram of protein at 37 degrees C: F420-linked pyruvate synthase, 170; citrate synthase, 0.7; aconitase, 55; oxidized nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, 75; and oxidized nicotinamide adenine dinucleotide-linked malate dehydrogenase, 76. The results indicate that M. barkeri assimilates acetate into alanine and aspartate via pyruvate and oxaloacetate and into glutamate via citrate, isocitrate, and alpha-ketoglutarate. The data reveal differences in the metabolism of M. barkeri and Methanobacterium thermoautotrophicum and similarities in the assimilation of acetate between M. barkeri and other anaerobic bacteria, such as Clostridium kluyveri.  相似文献   

14.
The herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was tested on mitochondria from etiolated pea (Pisum sativum L. cv Alaska) stems. This compound when used at micromolar concentrations ([almost equal to]20 [mu]M) inhibited malate- and succinate-dependent respiration by intact mitochondria but not oxidation of exogenously added NADH. Bromoxynil did not affect the activities of the succinic and the internal NADH dehydrogenases. Analyses of the effects induced by this herbicide on the membrane potential, [delta]pH, matrix Ca2+ movements, and dicarboxylate transport demonstrated that bromoxynil is likely to act as an inhibitor of the dicarboxylate carrier. In addition, bromoxynil caused a mild membrane uncoupling at concentrations [greater than or equal to]20 [mu]M. No effect on the ATPase activity was observed.  相似文献   

15.
Glutamine transport into rat brain synaptic and non-synaptic mitochondria has been monitored by the uptake of [3H]glutamine and by mitochondrial swelling. The concentration of glutamate in brain mitochondria is calculated to be high, 5–10 mM, indicating that phosphate activated glutaminase localized inside the mitochondria is likely to be dormant and the glutamine taken up not hydrolyzed. The uptake of [3H]glutamine is largely stereospecific. It is inhibited by glutamate, asparagine, aspartate, 2-oxoglutarate and succinate. Glutamate inhibits this uptake into synaptic and non-synaptic mitochondria by 95 and 85%, respectively. The inhibition by glutamate, asparagine, aspartate and succinate can be explained by binding to an inhibitory site whereas the inhibition by 2-oxoglutarate is counteracted by aminooxyacetic acid, which indicates that it is dependent on transamination. The glutamine-induced swelling, a measure of a very low affinity uptake, is inhibited by glutamate at a glutamine concentration of 100 mM, but this inhibition is abolished when the glutamine concentration is raised to 200 mM. This suggests that the very low affinity glutamine uptake is competitively inhibited by glutamate. Furthermore, glutamine-induced swelling is inhibited by 2-oxoglutarate, succinate and malate, similarly to that of the [3H]glutamine uptake. The properties of the mitochondrial glutamine transport are not identical with those of a recently purified renal glutamine carrier.  相似文献   

16.
Palmitylcarnitine oxidation by isolated liver mitochondria has been used to investigate the interaction of fatty acid oxidation with malate, glutamate, succinate, and the malate-aspartate shuttle. Mitochondria preincubated with fluorocitrate were added to a medium containing 2mM ATP and ATPase. This system, characterized by a high energy change, allowed titration of respiration to any desired rate between States 4 and 3 (Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65-134). When respiration (reference, with palmitylcarnitine and malate as substrates) was set at 75% of State 3, the oxidation of palmitylcarnitine was limited by acetoacetate formation. The addition of malate or glutamate approximately doubled the rate of beta oxidation. Malate circumvented this limitation by citrate formation, but the effect of glutamate apparently was due to enhancement of the capacity for ketogenesis. The rate of beta oxidation was curtailed when malate and glutamate were both present. This curtailment was more pronounced when the malate-aspartate shuttle was fully reconstituted. Among the oxidizable substrates examined, succinate was most effective in inhibiting palmitylcarnitine oxidation. Mitochondrial NADH/NAD+ ratios were correlated positively with suppression of beta oxidation. The degree of suppression of beta oxidation by the malate-aspartate shuttle (NADH oxidation) or by succinate oxidation was dependent on the respiratory state. Both substrates extensively reduced mitochondrial NAD+ and markedly suppressed beta oxidation as respiration approached State 4. Calculations of the rates of flux of hydrogen equivalents through beta oxidation show that the suppression of beta oxidation by glutamate or by the malate-aspartate shuttle is accounted for by increased flux of reducing equivalents through mitochondrial malic dehydrogenase. This increased Flux is accompanied by an increase in the steady state NADH/NAD+ ratio and a marked decrease in the synthesis of citrate. The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine. This shuttle was about equal to the reconstructed malate-aspartate shuttle in supression of palmitylcarnitine oxidation. This interaction could not be demonstrated in euthyroid animals owing to the low activity of the mitochondrial alpha-glycerol phosphate dehydrogenase. It is concluded that beta oxidation can be regulated by the NADH/NAD+ ratio. The observed stimulation of flux through malate dehydrogenase both by glutamate and by the malate-aspartate shuttle results in an increased steady state NADH/NAD+ ratio, and is linked to a stoichiometric outward transport of aspartate. We suggest, therefore, that some of the reducing pressure exerted by the malate-aspartate shuttle and by glutamate plus malate is provided through the energy-linked, electrogenic transport of aspartate out of the mitochondria. These results are discussed with respect to the mechanism of the genesis of ethanol-induced fatty liver.  相似文献   

17.
A subconvulsant dose of sodium fluoroacetate inhibited the metabolic utilization of intracerebrally-administered N-acetyl-l -[U-14C]asparticacid and the labelling of glutamine from this precursor in mouse brain, but not the labelling of glutamate or aspartate. A convulsant dose also inhibited the utilization of l -[U-14C]aspartic acid. When intraperitoneal injection of a convulsant dose of sodium fluoroacetate was followed by intracerebral injection of N-acetyl-l -[U-14C]asparticacid, the levels of N-acetylaspartate, aspartate and glutamate in brain were lowered, while the glutamine content was increased. The specific radioactivity of glutamine relative to that of glutamate was much lower when these compounds were labelled from l -[U-14C]aspartic acid than when N-acetyl-l -[U-14C]aspartic acid was used as the precursor. Intracerebral injection of tracer amounts of l -[U-14C]aspartic acid reduced the content of N-acetylaspartate in brain and raised the glutamine content. Sodium fluoroacetate had no additional effect on the relative specific radioactivity of glutamine or the content of N-acetylaspartate, aspartate, glutamate or glutamine when l -[U-14C]aspartic acid was the precursor. We consider the results to be consistent with a selective inhibition both by sodium fluoroacetate and by exogenous aspartic acid of the tricarboxylic acid cycle in brain associated with the biosynthesis of glutamine. We suggest that the activity of this pathway may regulate the metabolism of N-acetylaspartate and aspartate.  相似文献   

18.
1. The mechanism of L-cysteinesulfinate permeation into rat liver mitochondria has been investigated. 2. Mitochondria do not swell in ammonium or potassium salts of L-cysteinesulfinate in all the conditions tested, including the presence of valinomycin and/or carbonylcyanide p-trifluoromethoxyphenylhydrazone. 3. The activation of malate oxidation by L-cysteinesulfinate is abolished by aminooxyacetate, an inhibitor of the intramitochondrial aspartate aminotransferase, it is not inhibited by high concentrations of carbonylcyanide p-trifluoromethoxyphenylhydrazone (in contrast to the oxidation of malate plus glutamate) and it is decreased on lowering the pH of the medium. 4. All the aspartate formed during the oxidation of malate plus L-cysteinesulfinate is exported into the extramitochondrial space. 5. Homocysteinesulfinate, cysteate and homocysteate, which are all good substrates of the mitochondrial aspartate aminotransferase, are unable to activate the oxidation of malate. Homocysteinesulfinate and homocysteate have no inhibitory effect on the L-cysteinesulfinate-induced respiration, whereas cysteate inhibits it competitively with respect to L-cysteinesulfinate. 6. In contrast to D-aspartate, D-cysteinesulfinate and D-glutamate, L-aspartate inhibits the oxidation of malate plus L-cysteinesulfinate in a competitive way with respect to L-cysteinesulfinate. Vice versa, L-cysteinesulfinate inhibits the influx of L-aspartate. 7. Externally added L-cysteinesulfinate elicits efflux of intramitochondrial L-aspartate or L-glutamate. The cysteinesulfinate analogues homocysteinesulfinate, cysteate and homocysteate and the D-stereoisomers of cysteinesulfinate, aspartate and glutamate do not cause a significant release of internal glutamate or aspartate, indicating a high degree of specificity of the exchange reactions. External L-cysteinesulfinate does not cause efflux of intramitochondrial Pi, malate, malonate, citrate, oxoglutarate, pyruvate or ADP. The L-cysteinesulfinate-aspartate and L-cysteinesulfinate-glutamate exchanges are inhibited by glisoxepide and by known substrates of the glutamate-aspartate carrier. 8. The exchange between external L-cysteinesulfinate and intramitochondrial glutamate is accompanied by translocation of protons across the mitochondrial membrane in the same direction as glutamate. The L-cysteinesulfinate-aspartate exchange, on the other hand, is not accompanied by H+ translocation. 9. The ratios delta H+/delta glutamate, delta L-cysteinesulfinate/delta glutamate and delta L-cysteinesulfinate/delta aspartate are close to unity. 10. It is concluded that L-cysteinesulfinate is transported by the glutamate-aspartate carrier of rat liver mitochondria. The present data suggest that the dissociated form of L-cysteinesulfinate exchanges with H+-compensated glutamate or with negatively charged aspartate.  相似文献   

19.
The oxidative metabolism of glutamine in HeLa cells was investigated using intact cells and isolated mitochondria. The concentrations of the cytoplasmic amino acids were found to be aspartate, 8.0 mM; glutamate, 22.2 mM; glutamine, 11.3 mM; glycine, 9.8 mM; taurine, 2.3 mM; and alanine, <1 mM. Incubation of the cells with [14C]glutamine gave steady-state recoveries of 14C-label (estimated as exogenous glutamine) in the glutamine, glutamate, and aspartate pools, of 103%, 80%, and 25%, respectively, indicating that glutamine synthetase activity was absent and that a significant proportion of glutamate oxidation proceeded through aspartate aminotransferase. No label was detected in the alanine pool, suggesting that alanine aminotransferase activity was low in these cells. The clearance rate of [14C]glutamine through the cellular compartment was 65 nmol/min per mg protein. There was a 28 s delay after [14C]glutamine was added to the cell before 14C-label was incorporated into the cytoplasm, while the formation of glutamate commenced 10 s later. Aspartate was the major metabolite formed when the mitochondria were incubated in a medium containing either glutamine, glutamate, or glutamate plus malate. The transaminase inhibitor AOA inhibited both aspartate efflux from the mitochondria and respiration. The addition of 2-oxoglutarate failed to relieve glutamate plus malate respiration, indicating that 2-oxoglutarate is part of a well-coupled truncated cycle, of which aspartate aminotransferase has been shown to be a component [Parlo and Coleman (1984): J Biol Chem 259:9997–10003]. This was confirmed by the observation that, although it inhibited respiration, AOA did not affect the efflux of citrate from the mitochondria. Thus citrate does not appear to be a cycle component and is directly transported to the medium. Therefore, it was concluded that the truncated TCA cycle in HeLa cells is the result of both a low rate of citrate synthesis and an active citrate transporter. DNP (10 μM) induced a state III-like respiration only in the presence of succinate, which supports the evidence that NAD-linked dehydrogenases were not coupled to respiration, and suggests that these mitochondria may have a defect in complex I of the electron transport chain. Arising from the present results with HeLa cells and results extant in the literature, it has been proposed that a major regulating mechanism for the flux of glutamate carbon in tumour cells is the competitive inhibition exerted by 2-oxoglutarate on aspartate and alanine aminotransferases. This has been discussed and applied to the data. J. Cell. Biochem. 68:213–225, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Oxalate, a metabolic end product, forms calcium oxalate deposits in the tissues under a variety of pathological conditions. In order to determine whether oxalate is able to penetrate the mitochondrial matrix, the uptake of oxalate by rat liver and kidney cortical mitochondria was characterized. Mitochondria did not swell in an iso-osmotic medium of ammonium oxalate unless a small amount of phosphate was provided. This phosphate-induced swelling was prevented by N-ethylmaleimide. The uptake of [14C]oxalate by liver and kidney mitochondria followed first order kinetics and was inhibited by mersalyl an inhibitor of the phosphate and dicarboxylate carriers. Accumulation of [14C]oxalate at equilibrium was significantly higher by mitochondria energized with succinate than by rotenone-inhibited mitochondria due to higher matrix pH as determined by the [14C]5,5'-dimethyloxazolidine-2, 4-dione distribution ratio. The velocity of oxalate accumulation by mitochondria was temperature dependent. The activation energy was 81.5 and 86.5 J/mol for liver and kidney mitochondria, respectively. In both types of mitochondria, the rate of oxalate uptake was hyperbolic with respect to the concentration of oxalate. The apparent Km was 28.8 +/- 0.6 and 13.4 +/- 1.2 mM and the Vmax 87.1 +/- 1.1 and 66.1 +/- 3.1 nmol X mg-1 X min-1 at 12 degrees C for liver and kidney mitochondria, respectively. Phenylsuccinate exhibited mixed inhibition of the rate of oxalate uptake. Oxalate exhibited also a mixed inhibition of the uptake and oxidation of malate by mitochondria. The data obtained provide evidence that oxalate is transported across the mitochondrial membrane by a phosphate-linked, carrier-mediated system similar to or identical to the dicarboxylate transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号