首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within populations, individual animals may vary considerably in morphology and ecology. The degree to which variation in morphology is related to ecological variation within a population remains largely unexplored. We investigated whether variation in body size and shape among sexes and age classes of the lizard Podarcis melisellensis translates in differential whole-animal performance (sprint speed, bite force), escape and prey attack behaviour in the field, microhabitat use and diet. Male and female adult lizards differed significantly in body size and head and limb proportions. These morphological differences were reflected in differences in bite strength, but not in sprint speed. Accordingly, field measurements of escape behaviour and prey attack speed did not differ between the sexes, but males ate larger, harder and faster prey than females. In addition to differences in body size, juveniles diverged from adults in relative limb and head dimensions. These shape differences may explain the relatively high sprint and bite capacities of juvenile lizards. Ontogenetic variation in morphology and performance is strongly reflected in the behaviour and ecology in the field, with juveniles differing from adults in aspects of their microhabitat use, escape behaviour and diet.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 251–264.  相似文献   

2.
For species from open habitats with little cover and few refugia, selection should favour morphologies that enhance performance at tasks that enable rapid movement across open areas. Similarly, selection should also favour traits that enable rapid access and movement within suitable refugia. This study examined the relationship between habitat openness, refuge use, morphology and performance of 19 species representing 23 populations of tropical Lygosomine skink. Species from this group occupy a wide array of habitats from open forest and open rocky intertidal zones to high‐altitude heaths and dense, closed forests. Species that occupied open habitats were faster at sprinting, climbing and had better cling ability than species from more cluttered, closed habitats. In addition, species from habitats that used rock crevices as refuges had enhanced sprinting ability. This study shows the importance of both habitat openness and refuge type in the evolution of both the morphology and performance in lizards.  相似文献   

3.
Effectively moving across variable substrates is important to all terrestrial animals. The effects of substrates on lizard performance have ecological ramifications including the partitioning of habitat according to sprinting ability on different surfaces. This phenomenon is known as sprint sensitivity, or the decrease in sprint speed due to change in substrate. However, sprint sensitivity has been characterized only in arboreal Anolis lizards. Our study measured sensitivity to substrate rugosity among six lizard species that occupy rocky, sandy, and/or arboreal habitats. Lizards that use rocky habitats are less sensitive to changes in substrate rugosity, followed by arboreal lizards, and then by lizards that use sandy habitats. We infer from comparative phylogenetic analysis that forelimb, chest, and tail dimensions are important external morphological features related to sensitivity to changes in substrate rugosity.  相似文献   

4.
The repeated occurrence of similar morphologies in organisms from similar habitats provides good evidence of convergent selection, and convergent patterns of evolutionary change. In lizards, a flattened morphology has often been noted; however, whether this trait is convergent in specific habitats has never been tested using phylogenetic methods. The present study examined patterns of morphological convergence in 18 species of tropical Lygosomine skinks from three broad habitat categories (generalist, leaf litter-dwelling, and rock-using species). In general, although there where relatively few morphological differences of species from different habitats, phylogenetic analyses revealed that rock-using species have consistently and repeatedly evolved a dorsoventrally flattened head and body. The adaptive basis of this flattened morphology is consistent with both biomechanical predictions of performance (e.g. climbing locomotion) and ecology (e.g. use of rock crevices, camouflage) of species that occupy rocky habitats.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 399–411.  相似文献   

5.
Correlations between an animal's morphology and ecological parameters such as habitat characteristics emphasize the intimate link between phenotype and the environment, but are often difficult to interpret because the functional consequences of morphological variation are frequently unknown. We provide one of the few studies relating limb morphology, functional capabilities, and habitat in reptiles. We tested the hypothesis that species occupying open microhabitats would possess relatively longer limbs and faster sprint speeds than those occurring in more closed microhabitats. A number of morphological characteristics relevant to locomotion were quantified, including the length of the bones of the fore- and hindlimbs and body size. A phylogenetic analysis was then used to examine the evolutionary relationships between morphology, locomotor performance and microhabitat openness in seven species of Niveoscincus and one species of the closely related genus Pseudemoia. A significant evolutionary relationship was established between sprinting ability, morphology, and the openness of the microhabitat occupied by a species. The phylogenetic analysis demonstrated an evolutionary trend in Niveoscincus of species occupying open microhabitats (e.g. N. greeni, N ocellatus) being large with long limbs and high sprinting ability, while those occupying closed microhabitats (e.g. N coventryi, P. entrecasteauxii) art smaller with short limbs and much slower maximum sprint speeds.  相似文献   

6.
Most ecomorphological studies use a comparative approach to examine adaptation by studying variation among species. A question of considerable interest is whether ecomorphological patterns observed among species also exist at the population level. We studied variation in morphology, performance, and behaviour in four populations of Leiocephalus personatus and two populations of Leiocephalus barahonensis in the Dominican Republic. We combined these data with measurements of predation intensity and habitat structure to test for convergence at the population level. We predicted that predation intensity would be higher in open habitats and that lizards in these habitats would have traits conferring higher predator evasion capacity (increased wariness, faster sprint speeds, and longer limbs). Principal components analysis suggests that sites tend to differ with respect to the abundance and spacing of low-lying vegetation (i.e. percentage of shrub cover and distance to nearest vegetation), but we did not detect any striking differences among sites in tail-break frequencies or attacks on clay lizard models. Consistent with predictions we find that in open habitats, lizards tend to have longer limbs, faster sprint speeds (relative to body size), and longer approach distances. These patterns corroborate findings in other ground-dwelling lizard species and indicate that they have evolved at least twice among populations of Leiocephalus lizards. The results of this study also suggest that these traits have evolved rapidly despite recent or ongoing gene flow.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 445–456.  相似文献   

7.
Determining which traits enable organisms to colonize and persist in new environments is key to understanding adaptation and ecological speciation. New environments can present novel selective pressures on colonists' morphology, behaviour, and performance, collectively referred to as ecomorphology. To investigate ecomorphological change during adaptation and incipient ecological speciation, we measured differences in morphology (body shape and size), behaviour (startle response), and performance (sprint speed) in three New Mexican lizard species: Holbrookia maculata, Sceloporus undulatus, and Aspidoscelis inornata. Each species is represented by dark morphs, cryptic on the brown adobe soils of the Chihuahuan Desert, and white morphs, cryptic on the gypsum substrate of White Sands. For each species, we then determined the effects of morphology and startle response on sprint speed on matched and mismatched substrate. For two of the three species, white morphs had larger body size and longer limbs. However, we found no statistical evidence that these morphological differences affected sprint speed. Colour morphs also exhibited different escape responses on the two substrates: in all species, dark morphs were less likely to immediately sprint from a simulated predator on white sand. As a result, escape response had a significant effect on sprint speed for two of the three species. Not surprisingly, all lizards sprinted faster on dark soil, which was probably due to the lizards' more immediate escape response and the higher compaction of dark soil. The relationship between escape response and sprint performance across the dark soil and white sand habitats suggests that behavioural differences may be an important component of adaptation and speciation in new environments. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 169–182.  相似文献   

8.
Sprinting and jumping ability are key performance measures that have been widely studied in vertebrates. The vast majority of these studies, however, use methodologies that lack an ecological context by failing to consider the complex habitats in which many animals live. Because successfully navigating obstacles within complex habitats is critical for predator escape, running, climbing, and/or jumping performance are each likely to be exposed to selection. In the present study, we quantify how behavioural strategies and locomotor performance change with increasing obstacle height. Obstacle size had a significant influence on behaviour (e.g. obstacle crossing strategy, intermittent locomotion) and performance (e.g. sprint speed, jump distance). Jump frequency and distance increased with obstacle size, suggesting that it likely evolved because it is more efficient (i.e. it reduces the time and distance required to reach a target position). Jump angle, jump velocity, and approach velocity accounted for 58% of the variation in jump distance on the large obstacle, and 33% on the small obstacle. Although these variables have been shown to significantly influence jump distance in static jumps, they do not appear to be influential in running (dynamic) jumps onto a small obstacle. Because selection operates in simple and complex habitats, future studies should consider quantifying additional measures such as jumping or climbing with respect to the evolution of locomotion performance. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
Ecomorphological theory predicts a match between an organism's environment and its locomotor abilities, such that animals function most effectively under the conditions they experience in nature. However, amphibious species must simultaneously optimize performance in two different habitats posing incompatible demands on locomotor morphology and physiology. This situation may generate a mismatch between environment and locomotor function, with performance optimized only for the more important habitat type; alternatively, selection may fine-tune locomotor abilities for both types of challenges. Two species of sea kraits in New Caledonia offer an opportunity to examine this question: Laticauda laticaudata is more highly aquatic than L. colubrina , and males are more terrestrial than females within each taxon. We examined an aspect of locomotor performance that is critical to coming ashore on steep-walled rocky islets: the ability to climb steep cliffs. We also measured the muscular strength of these animals, a character that is likely critical to climbing performance. Laticauda colubrina was heavier-bodied and stronger (even relative to its body mass) than the more aquatic L. laticaudata ; and within each species, males were heavier-bodied and stronger than females. The same patterns were evident in cliff-climbing ability. Thus, the ability of different species and sexes of sea kraits to climb steep cliffs correlates with their body shape even though these primarily aquatic animals use terrestrial habitats only rarely.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 433–441.  相似文献   

10.
Fleeing from predators and moving into protective habitats are two common antipredator behaviours in the animal kingdom. Surprisingly, the relative cost/benefit trade‐off of each behavioural option has rarely been examined empirically. Here, we investigate the interplay between decisions surrounding escape behaviour and rocky microhabitat occupancy in lake sturgeon, Acipenser fulvescens. In high‐risk clear‐water environments, sturgeon responded to danger by evoking an escape response and by seeking cover in rocky microhabitats. However, in low‐risk turbid environments, we found that sturgeon responded to danger by seeking cover in rocky microhabitats, but not fleeing to a significant degree. Cover‐seeking behaviour may therefore be a relatively low‐cost/high‐benefit antipredator strategy. These findings highlight the importance of structural habitat heterogeneity for prey animals in predator‐dominated landscapes.  相似文献   

11.
We examined the sprinting and jumping capabilities of eight West Indian Anolis species during three natural activities (escape from a predator, feeding, and undisturbed activity). We then compared these field data with maximal performance under optimal laboratory conditions to answer three questions: (1) Has maximal (i.e., laboratory) sprinting and jumping performance coevolved with field performance among species? (2) What proportion of their maximum capabilities do anoles sprint and jump in different ecological contexts? (3) Does a relationship exist between maximal sprinting and jumping ability and the proportion of maximal performance used in these contexts? Among species, maximal speed is tightly positively correlated with sprinting performance during both feeding and escape in the field. Sprinting speed during escape closely matches maximal sprinting ability (i.e., about 90% of maximum performance). By contrast, sprinting performance during undisturbed activity is markedly lower (about 32% of maximum) than maximal sprinting performance. Sprinting ability during feeding is intermediate (about 71% of maximum) between field escape and field undisturbed activity. In contrast to sprinting ability, jumping ability is always substantially less than maximum (about 40% of maximum during feeding and undisturbed activity). A negative relationship exists among species between maximal speed and the proportion to which species sprint to their maximal abilities during field escape.  相似文献   

12.
Relations between microhabitat use and limb shape in phrynosomatid lizards   总被引:2,自引:0,他引:2  
With the exception of the well-documented case for anoline lizards, recent studies have found few evolutionary relationships between morphology and habitat use in lizards despite clear-cut biomechanical predictions. One of the factors typically hampering these analyses is the clustering of habitat use within evolutionary lineages. In the present study, body shape was quantified for male and female lizards of 30 species of phrynosomatid lizards. This group was selected as little clustering of ecological variables seemed to be present. The results of traditional analyses indicate that evolutionary correlates of habitat use were prominent in the hindlimbs of both sexes. Species living in open habitats are characterized by longer femurs, and longer hindlimbs relative to the forelimb. Moreover, males from ground-dwelling species utilizing open habitats have longer toes on the hind foot than males from climbing species. Phylogenetic analyses indicated strong evolutionary associations between habitat use and the relative length of front and hindlimbs, with species from open terrestrial habitats having significantly shorter frontlimbs relative to their hindlimb than rock or tree climbing species. Evolutionary associations between morphology and habitat use were generally stronger for male lizards, indicating a potentially important contribution of sexual selection to the evolution of differences in limb proportions.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 149–163.  相似文献   

13.
We examined whether a trade-off exists in sprinting ability among individuals within the Caribbean lizard Anolis lineatopus. Specifically, we made the following predictions: Longer-legged (relative to body size) individual lizards should sprint faster than shorter-legged lizards on a broad (5.1 cm diameter) rod. However, longer-legged lizards should also decline in sprinting performance to a greater extent than shorter-legged lizards when sprinting on rods of different diameters. To test these predictions, we examined morphology and sprinting performance in adult male, adult female and juvenile A. lineatopus. As predicted, longer-legged lizards are faster sprinters than shorter-legged lizards on the broad substrate, but they also decline more in speed between the broad and narrow (0.7 cm diameter) dowel. However, despite statistically significant morphological differences among intraspecific classes, differences in morphology did not result in differences in sprinting performance among intraspecific classes, with the exception that larger lizards run faster than smaller lizards on each dowel size.  相似文献   

14.
We used a phylogenetic comparative approach to investigate the importance of ecological shifts in the diversification of both signalling traits and ecomorphological traits in a diverse group of Australian skinks (Carlia). First, we tested whether divergence in male breeding coloration is associated with shifts in habitat openness. Second, we examined whether the type or location of male breeding coloration changes predictably with habitat openness. Third, we tested the ecomorphological predictions that body size should vary in relation to habitat openness and that limb length, toe length and head depth should vary with substrate use. Divergence in male breeding coloration was positively associated with shifts in habitat openness. Our results also indicate that species occupying more open habitats tend to use male sexual signals located on lateral body regions and not necessarily on body regions that are potentially more concealed from aerial predators (e.g. chest and throat). With regard to ecomorphological traits, habitat openness appears to have no predictable influence on body size at the inter-specific level, contrary to expectations based on intra-specific studies. However, consistent with functional predictions, we found that preference for rocky habitats is associated with relatively longer hind limb length, presumably due to selection for greater speed and jumping ability on these substrates. Overall, results of this study support the hypothesis that ecological shifts play a central role in promoting morphological diversification.  相似文献   

15.
Most animals rely on their escape speed to flee from predators. Here, we test several hypotheses on the evolution of escape speed in the lizard Psammodromus algirus. We test that: (1) Longer limbs should improve speed sprint. (2) Heavier lizards should be impaired regarding their sprint speed ability, suggesting a trade-off between fat storage and escape capability. (3) Males should achieve faster speeds due to their higher exposure to predators. (4) Gravid females, with increased body mass, should perform lower speed than non-gravid females. And (5) there are inter-population differences in sprint speed across an elevational gradient. We measured lizards sprint speed in a lineal raceway in the laboratory, filming races in standardized conditions and then calculating their maximal speed. We found that hind limb length greatly determined maximal sprint speed, lizards with longer limbs being faster. In parallel, higher body masses reduced maximal speed, which points to a trade-off between fat storage and escaping capability. Sexual differences also arose, as males were faster than females, as a consequence of males having longer limbs. Regarding females, gravidity did not impair maximal sprint speed, suggesting adaptations which compensate for the increased body mass. Finally, we found no elevational trend in both limbs length and sprint speed. In any case, this study suggests that selection on escape capacity may cast morphological evolution, and affect other life-history traits, such as fat storage and reproduction.  相似文献   

16.
We studied the effects of substrate structure on locomotor performance in a climbing gecko, Hemidactylus garnoti . We quantified three performance traits (acceleration capacity, instantaneous speed, and final speed) on three substrates: (i) smooth wood, (ii) a cloth surface, and (iii) a wire mesh. While acceleration capacity and instantaneous speed were highest on the wooden surface, final speed did not differ significantly among substrates. Using scanning electron microscopy (SEM) pictures, we estimated that 98% of the wooden surface is available for adhesion by the setae on the toepads, while this percentage is much lower for the mesh and cloth (41 and 37%, respectively). We suggest that when a gecko climbs up a gap-filled substrate, such as the wire mesh or cloth, adhesion will only happen between part of the toepad and the substrate, resulting in a diminished acceleration capacity. The higher acceleration capacity on the wooden substrate and the fact that the geckos tend to slip less often on this particular surface, may explain the difference in instantaneous speed. As for final speed, geckos might achieve similar final speeds on all three substrates by employing different locomotor strategies. Our results suggest that microhabitat use in nature might have a profound effect on locomotor performance and survival for climbing lizards such as geckos.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 385–393.  相似文献   

17.
Natural selection is an important driver of microevolution. Yet, despite significant theoretical debate, we still have a poor understanding of how selection operates on interacting traits (i.e., morphology, performance, habitat use). Locomotor performance is often assumed to impact survival because of its key role in foraging, predator escape, and social interactions, and shows strong links with morphology and habitat use within and among species. In particular, decades of study suggest, but have not yet demonstrated, that natural selection on locomotor performance has shaped the diversification of Anolis lizards in the Greater Antilles. Here, we estimate natural selection on sprinting speed and endurance in small replicate island populations of Anolis sagrei. Consistent with past correlational studies, long-limbed lizards ran faster on broad surfaces but also had increased sprint sensitivity on narrow surfaces. Moreover, performance differences were adaptive in the wild. Selection favored long-limbed lizards that were fast on broad surfaces, and preferred broad substrates in nature, and also short-limbed lizards that were less sprint sensitive on narrow surfaces, and preferred narrow perches in nature. This finding is unique in showing that selection does not act on performance alone, but rather on unique combinations of performance, morphology, and habitat use. Our results support the long-standing hypothesis that correlated selection on locomotor performance, morphology, and habitat use drives the evolution of ecomorphological correlations within Caribbean Anolis lizards, potentially providing a microevolutionary mechanism for their remarkable adaptive radiation.  相似文献   

18.
Whole‐animal performance abilities can facilitate the avoidance of predation and consequently influence fitness, but determining the functional significance of antipredation tactics is difficult without understanding how alternate predator escape strategies are related. We measured maximal sprint speed and dive duration in the semi‐aquatic skink Oligosoma suteri to determine how morphology and behaviour influence these alternate predator escape techniques and the relationship between the two measures. Gravid females and juveniles ran significantly slower, but had equivalent or longer dive durations than males and nongravid females. The two performance measures were not influenced by the same morphological and behavioural traits, and were not correlated among individuals. Thus, individuals that are poor sprinters because of their state (e.g. gravid or tail‐less individuals) would have a greater likelihood of successful escape by adopting an alternate escape strategy. For species that use multiple strategies for the same function, quantifying selection on whole‐animal performance will be difficult. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 241–249.  相似文献   

19.
Variation in phenotype between species or populations of the same species living in different habitats is often explained in an adaptive context with local habitat differences driving selection on morphological traits relevant in a given ecological context. Previous studies have demonstrated significant differences in limb and tail morphology between populations of the Cape Dwarf Chameleon (Bradypodion pumilum) living in closed vs. open habitats. However, the adaptive nature of the observed differences remains unclear. Here, we quantify the structural habitat use in two different populations, test whether the random habitat differs between the two sites and whether or not chameleons select perches randomly. Next, we test whether morphology is correlated with structural habitat use and test for differences in performance between populations. Our results demonstrate that habitats are structurally different, that chameleons in the two populations use perches of different diameters and that, in one of the populations, chameleons select relatively wider perches than available at random. Performance traits (hand and tail grip performance and sprint speed) are correlated with morphology (hand size, tail length and tibia length) and differ between sexes and populations. Moreover, performance is dependent on dowel size. These results suggest that differences in performance between populations are indeed adaptive and indicate the existence of true ecomorphs in chameleons of the genus Bradypodion. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 692–700.  相似文献   

20.
Fish assemblages in Cais do Carvão Bay, Madeira Island, a proposed marine protected area (MPA), were determined from a diver visual census. A total of 32 transect counts were performed. Habitats sampled included sandy bottom, rocky boulders, vertical walls and rocky outcrops. Species richness, diversity, density, trophic structure, size and spatial organization were documented for the fish assemblages. Forty‐four species from 23 families were encountered; 32% belonged to Sparidae (10) and Labridae (four). The greatest species richness (25) was observed in rocky boulder habitat at 10–15 m depth, while the lowest (five) occurred over a deeper sand habitat. The greatest density (760·5 individuals per 100 m2) was recorded over rocky outcropping (20–25 m deep), and the lowest of 11·6 individuals per 100 m2 was over a sand bottom at 10–15 m depth. Thalassoma pavo , Abudefduf luridus and Chromis limbata had higher densities on hard bottoms, while Heteroconger longissimus was the most abundant species in sand bottom habitats. No significant differences were detected for all indices calculated among depth intervals for sand and rocky boulder stations. Sand and rock boulder substratum, however, differed significantly for the 10–15 m depth stratum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号