首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Axon navigation relies on the competence of growth cones to sense and interpret attractive and repulsive guidance cues present along their trajectory. For most neurons, this process is mediated by a limited number of conserved families of ligand-receptor signaling systems, including Ephrin/Eph, Netrins/DCC-Unc5, Slits/Robo, and Semaphorins/Plexin-Neuropilin. Recent studies have demonstrated that some neurons respond also to well-known secreted signaling molecules, best known for their roles as morphogens, such as BMP7, SHH, FGF8, and Wnt. Thus, retina ganglion cell axon navigation is influenced by FGF, SHH, and possibly BMP signaling. Similarly, commissural neurons in the spinal cord respond sequentially to the activity of BMP, SHH, and Wnt to extend toward and away from their intermediate target, the floor plate. The data that support this conclusion will be summarized and how morphogens may signal at the growth cone will be discussed.  相似文献   

2.
The mushroom bodies (MBs) are prominent structures in the Drosophila brain that are essential for olfactory learning and memory. Characterization of the development and projection patterns of individual MB neurons will be important for elucidating their functions. Using mosaic analysis with a repressible cell marker (Lee, T. and Luo, L. (1999) Neuron 22, 451-461), we have positively marked the axons and dendrites of multicellular and single-cell mushroom body clones at specific developmental stages. Systematic clonal analysis demonstrates that a single mushroom body neuroblast sequentially generates at least three types of morphologically distinct neurons. Neurons projecting into the (gamma) lobe of the adult MB are born first, prior to the mid-3rd instar larval stage. Neurons projecting into the alpha' and beta' lobes are born between the mid-3rd instar larval stage and puparium formation. Finally, neurons projecting into the alpha and beta lobes are born after puparium formation. Visualization of individual MB neurons has also revealed how different neurons acquire their characteristic axon projections. During the larval stage, axons of all MB neurons bifurcate into both the dorsal and medial lobes. Shortly after puparium formation, larval MB neurons are selectively pruned according to birthdays. Degeneration of axon branches makes early-born gamma neurons retain only their main processes in the peduncle, which then project into the adult gamma lobe without bifurcation. In contrast, the basic axon projections of the later-born (alpha'/beta') larval neurons are preserved during metamorphosis. This study illustrates the cellular organization of mushroom bodies and the development of different MB neurons at the single cell level. It allows for future studies on the molecular mechanisms of mushroom body development.  相似文献   

3.
Vav family GEFs link activated Ephs to endocytosis and axon guidance   总被引:8,自引:0,他引:8  
Ephrin signaling through Eph receptor tyrosine kinases can promote attraction or repulsion of axonal growth cones during development. However, the mechanisms that determine whether Eph signaling promotes attraction or repulsion are not known. We show here that the Rho family GEF Vav2 plays a key role in this process. We find that, during axon guidance, ephrin binding to Ephs triggers Vav-dependent endocytosis of the ligand-receptor complex, thus converting an initially adhesive interaction into a repulsive event. In the absence of Vav proteins, ephrin-Eph endocytosis is blocked, leading to defects in growth cone collapse in vitro and significant defects in the ipsilateral retinogeniculate projections in vivo. These findings suggest an important role for Vav family GEFs as regulators of ligand-receptor endocytosis and determinants of repulsive signaling during axon guidance.  相似文献   

4.
Dearborn RE  Dai Y  Reed B  Karian T  Gray J  Kunes S 《PloS one》2012,7(5):e37303
Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.  相似文献   

5.
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood. Here, we report that mutations that disrupt the VAB-1 Eph receptor tyrosine kinase cause incompletely penetrant defects in axonal targeting and neuronal cell body positioning. The predominant axonal defect in vab-1 mutant animals was an overextension axon phenotype. Interestingly, constitutively active VAB-1 tyrosine kinase signaling caused a lack of axon outgrowth or an early termination phenotype, opposite to the loss-of-function phenotype. The combination of loss-of-function and gain-of-function analyses suggests that the VAB-1 Eph RTK is required for targeting or limiting axons and neuronal cells to specific regions, perhaps by transducing a repellent or stop cue.  相似文献   

6.
BACKGROUND: The ventral midline is a prominent structure in vertebrate and invertebrate nervous systems that provides crucial topological information for guiding axons to their appropriate target destinations. Rather than being composed of specialized midline glia cells as in many other species, the embryonic midline of the nematode Caenorhabditis elegans is physically defined by motoneuron cell bodies that separate the left from the right ventral cord fascicles. Their function during development, if any, is not known. RESULTS: We show here that besides being components of the postembryonic locomotory circuit, these embryonic motoneurons (eMNs) actively provide midline guidance information for a specific subset of ventral midline axons. This information is provided in the form of a novel, cell-surface-anchored immunoglobulin superfamily (IgSF) member, WRK-1. WRK-1 acts in eMNs to prevent follower axons from inappropriately crossing the ventral midline. We describe the function of the Eph receptor vab-1 and multiple ephrin ligands at the midline, and we show by double mutant analysis and physical interaction tests that WRK-1 functionally interacts with the Eph receptor system. This interaction appears to occur exclusively in the context of axon guidance at the ventral midline but not in other cellular contexts, thereby suggesting that Eph receptor signaling is mechanistically distinct in different tissue types. CONCLUSIONS: Our studies reveal cellular and molecular components of axon midline patterning and suggest that Ephrin signaling relies on previously unknown accessory components.  相似文献   

7.
BACKGROUND: During somitogenesis, segmental patterns of gene activity provide the instructions by which mesenchymal cells epithelialize and form somites. Various members of the Eph family of transmembrane receptor tyrosine kinases and their Ephrin ligands are expressed in a segmental pattern in the rostral presomitic mesoderm. This pattern establishes a receptor/ligand interface at each site of somite furrow formation. In the fused somites (fss/tbx24) mutant, lack of intersomitic boundaries and epithelial somites is accompanied by a lack of Eph receptor/Ephrin signaling interfaces. These observations suggest a role for Eph/Ephrin signaling in the regulation of somite epithelialization. RESULTS: We show that restoration of Eph/Ephrin signaling in the paraxial mesoderm of fss mutants rescues most aspects of somite morphogenesis. First, restoration of bidirectional or unidirectional EphA4/Ephrin signaling results in the formation and maintenance of morphologically distinct boundaries. Second, activation of EphA4 leads to the cell-autonomous acquisition of a columnar morphology and apical redistribution of beta-catenin, aspects of epithelialization characteristic of cells at somite boundaries. Third, activation of EphA4 leads to nonautonomous acquisition of columnar morphology and polarized relocalization of the centrosome and nucleus in cells on the opposite side of the forming boundary. These nonautonomous aspects of epithelialization may involve interplay of EphA4 with other intercellular signaling molecules. CONCLUSIONS: Our results demonstrate that Eph/Ephrin signaling is an important component of the molecular mechanisms driving somite morphogenesis. We propose a new role for Eph receptors and Ephrins as intercellular signaling molecules that establish cell polarity during mesenchymal-to-epithelial transition of the paraxial mesoderm.  相似文献   

8.
During development, Eph receptors mediate the repulsive axon guidance function of ephrins, a family of membrane attached ligands with their own receptor-like signaling potential. In cultured glutamatergic neurons, EphB2 receptors were recently shown to associate with NMDA receptors at synaptic sites and were suggested to play a role in synaptogenesis. Here we show that Eph receptor stimulation in cultured neurons modulates signaling pathways implicated in synaptic plasticity, suggesting cross-talk with NMDA receptor-activated pathways. Mice lacking EphB2 have normal hippocampal synapse morphology, but display defects in synaptic plasticity. In EphB2(-/-) hippocampal slices, protein synthesis-dependent long-term potentiation (LTP) was impaired, and two forms of synaptic depression were completely extinguished. Interestingly, targeted expression of a carboxy-terminally truncated form of EphB2 rescued the EphB2 null phenotype, indicating that EphB2 kinase signaling is not required for these EphB2-mediated functions.  相似文献   

9.
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.  相似文献   

10.
Kao TJ  Kania A 《Neuron》2011,71(1):76-91
Axon guidance receptors guide neuronal growth cones by binding in trans to axon guidance ligands in the developing nervous system. Some ligands are coexpressed in cis with their receptors, raising the question of the relative contribution of cis and trans interactions to axon guidance. Spinal motor axons use Eph receptors to select a limb trajectory in response to trans ephrins, while expressing ephrins in cis. We show that changes in motor neuron ephrin expression result in trajectory selection defects mirrored by changes in growth cone sensitivity to ephrins in vitro, arguing for ephrin cis-attenuation of Eph function. Furthermore, the relative contribution of trans-signaling and cis-attenuation is influenced by the subcellular distribution of ephrins to membrane patches containing Eph receptors. Thus, growth cone ephrins are essential for axon guidance in vivo and the balance between cis and trans modes of axon guidance ligand-receptor interaction contributes to the diversity of axon guidance signaling responses.  相似文献   

11.
Neural map specification by gradients   总被引:1,自引:0,他引:1  
  相似文献   

12.
Eph/Ephrin家族是受体酪氨酸激酶家族中的最大亚族,在生理和病理性血管形成中起重要作用。眼部血管生成是糖尿病视网膜病、早产儿视网膜等眼部疾病致盲的重要因素,Eph和Ephrin基因在上述眼部疾病中有不同程度表达改变。Eph受体及其配体Ephrin之间的双向信号机制是Eph-Ephrin发挥功能的主要方式。本文就Eph-Ephrin双向信号机制在眼部血管新生中的作用进行综述。  相似文献   

13.
Eph receptors and their ephrin ligands are key conserved regulators of axon guidance and can function in a variety of signaling modes. Here we analyze the genetic and cellular requirements for Eph signaling in a Caenorhabditis elegans axon guidance choice point, the ventral guidance of axons in the amphid commissure. The C. elegans Eph receptor EFN-1 has both kinase-dependent and kinase-independent roles in amphid ventral guidance. Of the four C. elegans ephrins, we find that only EFN-1 has a major role in amphid axon ventral guidance, and signals in both a receptor kinase-dependent and kinase-independent manner. Analysis of EFN-1 and EFN-1 expression and tissue-specific requirements is consistent with a model in which VAB-1 acts in amphid neurons, interacting with EFN-1 expressed on surrounding cells. Unexpectedly, left-hand neurons are more strongly affected than right-hand neurons by loss of Eph signaling, indicating a previously undetected left–right asymmetry in the requirement for Eph signaling. By screening candidate genes involved in Eph signaling, we find that the Eph kinase-independent pathway involves the ABL-1 nonreceptor tyrosine kinase and possibly the phosphatidylinositol 3-kinase pathway. Overexpression of ABL-1 is sufficient to rescue EFN-1 ventral guidance defects cell autonomously. Our results reveal new aspects of Eph signaling in a single axon guidance decision in vivo.  相似文献   

14.
During development, axons are guided to their appropriate targets by a variety of guidance factors. On arriving at their synaptic targets, or while en route, axons form branches. Branches generated de novo from the main axon are termed collateral branches. The generation of axon collateral branches allows individual neurons to make contacts with multiple neurons within a target and with multiple targets. In the adult nervous system, the formation of axon collateral branches is associated with injury and disease states and may contribute to normally occurring plasticity. Collateral branches are initiated by actin filament– based axonal protrusions that subsequently become invaded by microtubules, thereby allowing the branch to mature and continue extending. This article reviews the current knowledge of the cellular mechanisms of the formation of axon collateral branches. The major conclusions of this review are (1) the mechanisms of axon extension and branching are not identical; (2) active suppression of protrusive activity along the axon negatively regulates branching; (3) the earliest steps in the formation of axon branches involve focal activation of signaling pathways within axons, which in turn drive the formation of actin-based protrusions; and (4) regulation of the microtubule array by microtubule-associated and severing proteins underlies the development of branches. Linking the activation of signaling pathways to specific proteins that directly regulate the axonal cytoskeleton underlying the formation of collateral branches remains a frontier in the field.  相似文献   

15.
Excitatory Eph receptors and adhesive ephrin ligands   总被引:10,自引:0,他引:10  
Ephrins are cell surface associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance, cell migration, topographic mapping and angiogenesis. During the past year, Eph receptors have been shown to associate with glutamate receptors in excitatory neurons, suggesting a role in synapse formation or function. Moreover, ephrin/Eph signaling appears to regulate neural stem cell proliferation and migration in adult mouse brains. The mode of action of ephrin/Ephs has been expanded from repulsion to adhesion and from cell surface attachment to regulated cleavage.  相似文献   

16.
Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.  相似文献   

17.
EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase   总被引:3,自引:0,他引:3  
Ephrin kinases and their ephrin ligands transduce repulsion of cells in axon guidance, migration, invasiveness, and tumor growth, exerting a negative signaling on cell proliferation and adhesion. A key role of their kinase activity has been confirmed by mutant kinase inactive receptors that shift the cellular response from repulsion to adhesion. Our present study aimed to investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in ephrinA1/EphA2 signaling. LMW-PTP, by means of dephosphorylation of EphA2 kinase, negatively regulates the ephrinA1-mediated repulsive response, cell proliferation, cell adhesion and spreading, and the formation of retraction fibers, thereby confirming the relevance of the net level of tyrosine phosphorylation of Eph receptors. LMW-PTP interferes with ephrin-mediated mitogen-activated protein kinase signaling likely through inhibition of p120RasGAP binding to the activated EphA2 kinase, thereby confirming the key role of mitogen-activated protein kinase inhibition by ephrinA1 repulsive signaling. We conclude that LMW-PTP acts as a terminator of EphA2 signaling causing an efficient negative feedback loop on the biological response mediated by ephrinA1 and pointing on tyrosine phosphorylation as the main event orchestrating the repulsive response.  相似文献   

18.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   

19.
Ephrin/Eph ligands and receptors are best known for their prominent role in topographic mapping of neural connectivity. Despite the large amount of work centered on ephrin/Eph-dependent signaling pathways in various cellular contexts, the molecular mechanisms of action of Eph receptors in neural mapping, requiring dynamic interactions between complementary gradients of ephrins and Eph receptors, remain largely unknown. Here, we investigated in vivo the signaling mechanisms of neural mapping mediated by the EphA4 receptor, previously shown to control topographic specificity of thalamocortical axons in the mouse somatosensory system. Using axon tracing analyses of knock-in mouse lines displaying selective mutations for the Epha4 gene, we determined for the first time which intracellular domains of an Eph receptor are required for topographic mapping. We provide direct in vivo evidence that the tyrosine kinase domain of EphA4, as well as a tight regulation of its activity, are required for topographic mapping of thalamocortical axons, whereas non-catalytic functional modules, such as the PDZ-binding motif (PBM) and the Sterile-alpha motif (SAM) domain, are dispensable. These data provide a novel insight into the molecular mechanisms of topographic mapping, and constitute a physiological framework for the dissection of the downstream signaling cascades involved.  相似文献   

20.
Over half of the neurons in Caenorhabditis elegans send axons to the nerve ring, a large neuropil in the head of the animal. Genetic screens in animals that express the green fluorescent protein in a subset of sensory neurons identified eight new sax genes that affect the morphology of nerve ring axons. sax-3/robo mutations disrupt axon guidance in the nerve ring, while sax-5, sax-9 and unc-44 disrupt both axon guidance and axon extension. Axon extension and guidance proceed normally in sax-1, sax-2, sax-6, sax-7 and sax-8 mutants, but these animals exhibit later defects in the maintenance of nerve ring structure. The functions of existing guidance genes in nerve ring development were also examined, revealing that SAX-3/Robo acts in parallel to the VAB-1/Eph receptor and the UNC-6/netrin, UNC-40/DCC guidance systems for ventral guidance of axons in the amphid commissure, a major route of axon entry into the nerve ring. In addition, SAX-3/Robo and the VAB-1/Eph receptor both function to prevent aberrant axon crossing at the ventral midline. Together, these genes define pathways required for axon growth, guidance and maintenance during nervous system development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号