首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Elevation of intracellular 8-bromo-cyclic AMP (cAMP) can activate certain steroid receptors and enhance the ligand-dependent activation of most receptors. During ligand-independent activation of the chicken progesterone receptor (cPR(A)) with the protein kinase A (PKA) activator, 8-bromo-cAMP, we found no alteration in cPR(A) phosphorylation (W. Bai, B. G. Rowan, V. E. Allgood, B. W. O'Malley, and N. L. Weigel, J. Biol. Chem. 272:10457-10463, 1997). To determine if other receptor-associated cofactors were targets of cAMP-dependent signaling pathways, we examined the phosphorylation of steroid receptor coactivator 1 (SRC-1). We detected a 1.8-fold increase in SRC-1 phosphorylation in transfected COS-1 cells incubated with 8-bromo-cAMP. Phosphorylation was increased on two mitogen-activated protein kinase (MAPK) sites, threonine 1179 and serine 1185. PKA did not phosphorylate these sites in vitro. However, blockage of PKA activity in COS-1 cells with the PKA inhibitor (PKI) prevented the 8-bromo-cAMP-mediated phosphorylation of these sites. Incubation of COS-1 cells with 8-bromo-cAMP resulted in activation of the MAPK pathway, as determined by Western blotting with antibodies to the phosphorylated (active) form of Erk-1/2, suggesting an indirect pathway to SRC-1 phosphorylation. Mutation of threonine 1179 and serine 1185 to alanine in COS-1 cells coexpressing cPR(A) and the GRE(2)E1bCAT reporter resulted in up to a 50% decrease in coactivation during both ligand-independent activation and ligand-dependent activation. This was due, in part, to loss of functional cooperation between SRC-1 and CREB binding protein for coactivation of cPR(A). This is the first demonstration of cross talk between a signaling pathway and specific phosphorylation sites in a nuclear receptor coactivator that can regulate steroid receptor activation.  相似文献   

3.
4.
5.
Insulin receptor substrate 1 (IRS-1) plays an important role in the insulin signaling cascade. In vitro and in vivo studies from many investigators have suggested that lowering of IRS-1 cellular levels may be a mechanism of disordered insulin action (so-called insulin resistance). We previously reported that the protein levels of IRS-1 were selectively regulated by a proteasome degradation pathway in CHO/IR/IRS-1 cells and 3T3-L1 adipocytes during prolonged insulin exposure, whereas IRS-2 was unaffected. We have now studied the signaling events that are involved in activation of the IRS-1 proteasome degradation pathway. Additionally, we have addressed structural elements in IRS-1 versus IRS-2 that are required for its specific proteasome degradation. Using ts20 cells, which express a temperature-sensitive mutant of ubiquitin-activating enzyme E1, ubiquitination of IRS-1 was shown to be a prerequisite for insulin-induced IRS-1 proteasome degradation. Using IRS-1/IRS-2 chimeric proteins, the N-terminal region of IRS-1 including the PH and PTB domains was identified as essential for targeting IRS-1 to the ubiquitin-proteasome degradation pathway. Activation of phosphatidylinositol 3-kinase is necessary but not sufficient for activating and sustaining the IRS-1 ubiquitin-proteasome degradation pathway. In contrast, activation of mTOR is not required for IRS-1 degradation in CHO/IR cells. Thus, our data provide insight into the molecular mechanism of insulin-induced activation of the IRS-1 ubiquitin-proteasome degradation pathway.  相似文献   

6.
7.
Degradation of alpha-synuclein by proteasome   总被引:12,自引:0,他引:12  
Mutations in alpha-synuclein are known to be associated with Parkinson's disease (PD). The coexistence of this neuronal protein with ubiquitin and proteasome subunits in Lewy bodies in sporadic disease suggests that alterations of alpha-synuclein catabolism may contribute to the pathogenesis of PD. The degradation pathway of alpha-synuclein has not been identified nor has the kinetics of this process been described. We investigated the degradation kinetics of both wild-type and A53T mutant 6XHis-tagged alpha-synuclein in transiently transfected SH-SY5Y cells. Degradation of both isoforms followed first-order kinetics over 24 h as monitored by the pulse-chase method. However, the t((1)/(2)) of mutant alpha-synuclein was 50% longer than that of the wild-type protein (p < 0.01). The degradation of both recombinant proteins and endogenous alpha-synuclein in these cells was blocked by the selective proteasome inhibitor beta-lactone (40 microM), indicating that both wild-type and A53T mutant alpha-synuclein are degraded by the ubiquitin-proteasome pathway. The slower degradation of mutant alpha-synuclein provides a kinetic basis for its intracellular accumulation, thus favoring its aggregation.  相似文献   

8.
Activation of NMDA receptors leads to activation of cAMP-dependent protein kinase (PKA). The main substrates phosphorylated by PKA following NMDA receptor activation remain unidentified. The aim of this work was to identify a major substrate phosphorylated by PKA following NMDA receptor activation in cerebellar neurones in culture, and to assess whether this phosphorylation may be involved in neuronal death induced by excessive NMDA receptor activation. The main PKA substrate following NMDA receptor activation was identified by MALDI-TOFF fingerprinting as the nuclear protein, matrin 3. PKA-mediated phosphorylation of matrin 3 is followed by its degradation. NMDA receptor activation in rat brain in vivo by ammonia injection also induced PKA-mediated matrin 3 phosphorylation and degradation in brain cell nuclei. Blocking NMDA receptors in brain in vivo with MK-801 reduced basal phosphorylation of matrin 3, suggesting that it is modulated by NMDA receptors. Inhibition of PKA with H-89 prevents NMDA-induced phosphorylation and degradation of matrin 3 as well as neuronal death. These results suggest that PKA-mediated phosphorylation of matrin 3 may serve as a rapid way of transferring information from synapses containing NMDA receptors to neuronal nuclei under physiological conditions, and may contribute to neuronal death under pathological conditions.  相似文献   

9.
In eukaryotic cells, the ubiquitin-proteasome pathway is the major mechanism for targeted degradation of proteins. We show that, in F9 cells and in transfected COS-1 cells, the nuclear retinoid receptors, retinoic acid receptor gamma2 (RARgamma2), RARalpha1, and retinoid X receptor alpha1 (RXRalpha1) are degraded in a retinoic acid-dependent manner through the ubiquitin-proteasome pathway. The degradation of RARgamma2 is entirely dependent on its phosphorylation and on its heterodimerization with liganded RXRalpha1. In contrast, RARalpha1 degradation can occur in the absence of heterodimerization, whereas it is inhibited by phosphorylation, and heterodimerization reverses that inhibition. RXRalpha1 degradation is also modulated by heterodimerization. Thus, each partner of RARgamma/RXRalpha and RARalpha/RXRalpha heterodimers modulates the degradation of the other. We conclude that the ligand-dependent degradation of RARs and RXRs by the ubiquitin-proteasome pathway, which is regulated by heterodimerization and by phosphorylation, could be important for the regulation of the magnitude and duration of the effects of retinoid signals.  相似文献   

10.
11.
Papillomaviruses maintain their genomes in a relatively constant copy number as stable extrachromosomal plasmids in the nuclei of dividing host cells. The viral initiator of replication, E1, is not detected in papillomavirus-infected cells. Here, we present evidence that E1 encoded by bovine papillomavirus type 1 is an unstable protein that is degraded through the ubiquitin-proteasome pathway. In a cell-free system derived from Xenopus egg extracts, E1 degradation is regulated by both cyclin E/Cdk2 binding and E1 replication activity. Free E1 is readily ubiquitinated and degraded by the proteasome, while it becomes resistant to this degradation pathway when bound to cyclin E/Cdk2 complexes before the start of DNA synthesis. This stabilization is reversed in a process involving E1-dependent replication activity. In transiently transfected cells, E1 is also polyubiquitinated and accumulates when proteasome activity is inhibited. Thus, the establishment and maintenance of a stable number of papillomavirus genomes in latently infected cells are in part a function of regulated ubiquitin-mediated degradation of E1.  相似文献   

12.
13.
14.
The role of microtubules (MTs) in steroid hormone-dependent human glucocorticoid receptor (hGR) activation/translocation is controversial. It was demonstrated recently that colchicine (COL) down-regulates hGR-driven genes in primary human hepatocytes by a mechanism involving inhibition of hGR translocation to the nucleus. To investigate whether inhibition of hGR translocation is the sole reason for its inactivation, we used human cervical carcinoma cells (HeLa) as a model. Herein we present evidence that perturbation of microtubules in HeLa cells leads to rapid time- and dose-dependent degradation of hGR protein. Degradation is proteasome mediated as revealed by its reversibility by proteasome inhibitor MG132. Moreover, degradation was observed for neither wt-hGR nor hGR mutants S226A and K419A in transiently transfected COS-1 cells. On the other hand, c-jun N-terminal kinase (JNK) seems not to be involved in the process because JNK inhibitor 1,9-Pyrazoloanthrone (SP600125) does not reverse hGR degradation. Similarly, another hGR functional antagonist, nuclear factor kappa beta (NFkappaB), did not play any role in the degradation process.  相似文献   

15.
16.
17.
18.
19.
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.  相似文献   

20.
Phenobarbital (PB) induction of CYP2B genes is mediated by translocation of the constitutively active androstane receptor (CAR) to the nucleus. Interaction of CAR with p160 coactivators and enhancement of CAR transactivation by the coactivators have been shown in cultured cells. In the present studies, the interaction of CAR with the p160 coactivator glucocorticoid receptor-interacting protein 1 (GRIP1) was examined in vitro and in vivo. Binding of GRIP1 to CAR was shown by glutathione S-transferase (GST) pull-down and affinity DNA binding. N- or C-terminal fragments of GRIP1 that contained the central receptor-interacting domain bound to GST-CAR, but the presence of ligand increased the binding to GST-CAR of only the fragments containing the C-terminal region. In gel shift analysis, binding to CAR was observed only with GRIP1 fragments containing the C-terminal region, and the binding was increased by a CAR agonist and decreased by a CAR antagonist. Expression of GRIP1 enhanced CAR-mediated transactivation in cultured hepatic-derived cells 2-3-fold. In hepatocytes transfected in vivo, expression of exogenous GRIP1 alone induced transactivation of the CYP2B1 PB-dependent enhancer 15-fold, whereas CAR expression alone resulted in only a 3-fold enhancement in untreated mice. Remarkably, CAR and GRIP1 together synergistically transactivated the enhancer about 150-fold, which is approximately equal to activation by PB treatment. In PB-treated mice, expression of exogenous CAR alone had little effect, expression of GRIP1 increased transactivation about 2-fold, and with CAR and GRIP, a 4-fold activation was observed. In untreated mice, expression of GRIP resulted in nuclear translocation of green fluorescent protein-CAR. These results strongly suggest that a p160 coactivator functions in CAR-mediated transactivation in vivo in response to PB treatment and that the synergistic activation of CAR by GRIP in untreated animals results from both nuclear translocation and activation of CAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号