首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The remarkable totipotent stem-cell-based regeneration capacities of the Platyhelminthes have brought them into the focus of stem cell and regeneration research. Although selected platyhelminth groups are among the best-studied invertebrates, our data provide new insights into regenerative processes in the most basally branching group of the Platyhelminthes, the Catenulida. The mouth- and gutless free-living catenulid flatworm Paracatenula galateia harbors intracellular bacterial symbionts in its posterior body region, the trophosome region, accounting for up to 50% of the volume. Following decapitation of this flatworm, we have analyzed the behavior of the amputated fragments and any anterior and posterior regeneration. Using an EdU-pulse-chase/BrdU-pulse thymidine analog double-labeling approach combined with immunohistochemistry, we show that neoblasts are the main drivers of the regeneration processes. During anterior (rostrum) regeneration, EdU-pulse-chase-labeled cells aggregate inside the regenerating rostrum, whereas BrdU pulse-labeling before fixation indicates clusters of S-phase neoblasts at the same position. In parallel, serotonergic nerves reorganize and the brain regenerates. In completely regenerated animals, the original condition with S-phase neoblasts being restricted to the body region posterior to the brain is restored. In contrast, no posterior regeneration or growth of the trophosome region in anterior fragments cut a short distance posterior to the brain has been observed. Our data thus reveal interesting aspects of the cellular processes underlying the regeneration of the emerging catenulid-bacteria symbiosis model P. galateia and show that a neoblast stem cell system is indeed a plesiomorphic feature of basal platyhelminths.  相似文献   

2.
The Enchytraeida Oligochaeta Enchytraeus japonensis propagates asexually by spontaneous autotomy. Normally, each of the 5-10 fragments derived from a single worm regenerates a head anteriorly and a tail posteriorly. Occasionally, however, a head is formed posteriorly in addition to the normal anterior head, resulting in a bipolar worm. This phenomenon prompted us to conduct a series of experiments to clarify how the head and the tail are determined during regeneration in this species. The results showed that (1) bipolar head regeneration occurred only after artificial amputation, and not by spontaneous autotomy, (2) anesthesia before amputation raised the frequency of bipolar head regeneration, and (3) an extraordinarily high proportion of artificially amputated head fragments regenerated posterior heads. Close microscopic observation of body segments showed that each trunk segment has one specific autotomic position, while the head segments anterior to the VIIth segment do not. Only the most posterior segment VII in the head has an autotomic position. Examination just after amputation found that the artificial cutting plane did not correspond to the normal autotomic position in most cases. As time passed, however, the proportion of worms whose cutting planes corresponded to the autotomic position increased. It was suspected that the fragments autotomized after the artificial amputation (corrective autotomy). This post-amputation autotomy was probably inhibited by anesthesia. The rate at which amputated fragments did not autotomize corresponded roughly to the rate of bipolar regeneration. It was hypothesized then that the head regenerated posteriorly if a fragment was not amputated at the precise autotomic position from which it regenerated without succeeding in corrective autotomy.  相似文献   

3.
Peripheral nerve interactions and regenerative phenomena were studied in newt forelimbs fused end to end. After simple fusion, one or two spikelike structures regenerated at the plane of fusion in 88% of the cases. When one of the limbs was denervated at the time of fusion, no regeneration occurred from the plane of fusion. If the limbs were fused and one was amputated at the shoulder more than 10 days after fusion, regeneration from the amputation surface did not occur. When the limbs were reamputated 30 days later, regeneration of left limbs from the proximodistally reversed right limb stumps followed. If one of the limbs was denervated at the time of fusion, and amputation was subsequently carried out through the formerly denervated limb, regeneration always took place after the first amputation. On the basis of these results it is postulated that when regenerating nerves of opposite proximodistal polarity meet head-on, the majority of fibers, at least, do not grow into territories occupied by the other nerve. These results have also demonstrated that full limb regeneration can occur at a greater distance from the midline than the end of a normal limb. These experiments also provide a technique for artificially elongating peripheral nerves.  相似文献   

4.
The effects of retinoic acid (RA) on anteroposterior (AP) positional memory of regenerating axolotl limbs were tested after removing the anterior or posterior half from the zeugopodium (lower arm or leg). RA (150 micrograms/g body wt) was injected into groups of animals bearing the following types of limbs: (1) anterior and posterior half zeugopodia grafted to the eyesocket and amputated distally 7 days later; (2) unamputated anterior and posterior half zeugopodia in situ; (3) double anterior and double posterior half zeugopodia amputated distally 7 days after their construction; (4) sham-operated zeugopodia amputated distally 7 days after operation. Controls consisted of these four groups injected with the retinoid solvent, dimethyl sulfoxide, or not injected. Control half zeugopodia grafted to the eyesocket regenerated no more than one or two digits. Control unamputated half zeugopodia in situ underwent partial or complete regeneration of the missing half from the proximal and midline wound surfaces exposed during construction of the half zeugopodia. Control double anterior and posterior zeugopodia both regenerated symmetrical, hypomorphic regenerates with 1-3 digits in the double anteriors and 1-6 digits in the double posteriors. Sham-operated controls regenerated normally. Regenerating anterior and posterior halves responded differently to RA. RA-treated anterior half zeugopodia in the eyesocket, and anterior half stumps adjacent to the unamputated posterior half zeugopodia in situ both produced regenerates that duplicated stump structures in the proximodistal axis and formed a complete and normal AP pattern. RA-treated double anterior zeugopodia regenerated proximodistal-duplicated pairs of mirror-imaged limbs, each with a complete and normal AP pattern. In contrast, half posterior zeugopodia in the eyesocket, the posterior half stumps of unamputated half anterior zeugopodia in situ, and double posterior zeugopodia all failed to regenerate. These results suggest that RA modifies positional memory in only one direction in the AP axis, posterior.  相似文献   

5.
Wnt signaling functions in axis formation and morphogenesis in various animals and organs. Here we report that Wnt signaling is required for proper brain patterning during planarian brain regeneration. We showed here that one of the Wnt homologues in the planarian Dugesia japonica, DjwntA, was expressed in the posterior region of the brain. When DjwntA-knockdown planarians were produced by RNAi, they could regenerate their heads at the anterior ends of the fragments, but formed ectopic eyes with irregular posterior lateral branches and brain expansion. This suggests that the Wnt signal may be involved in antero-posterior (A-P) patterning of the planarian brain, as in vertebrates. We also investigated the relationship between the DjwntA and nou-darake/FGFR signal systems, as knockdown planarians of these genes showed similar phenotypes. Double-knockdown planarians of these genes did not show any synergistic effects, suggesting that the two signal systems function independently in the process of brain regeneration, which accords with the fact that nou-darake was expressed earlier than DjwntA during brain regeneration. These observations suggest that the nou-darake/FGFR signal may be involved in brain rudiment formation during the early stage of head regeneration, and subsequently the DjwntA signal may function in A-P patterning of the brain rudiment.  相似文献   

6.
Specification of polar and lateral axes has been investigated in several metazoan developmental systems. In order to analyze this phenomenon in unicellular organisms, singlet cells of the ciliate, Stylonychia mytilus, were cut along their longitudinal axis and the regenerative morphogenetic sequence was analyzed. Morphogenesis in right fragments, which folded such that the posterior and anterior ends were juxtaposed and fused, leads to formation of two partially mirror-imaged incomplete ventral ciliary patterns. Regenerative morphogenesis in singlet hypotrich ciliates typically produces only one complete set of ciliary organelles. These data demonstrate that cytoplasmic orientation (cytogeometry) plays a major role in the determination of ciliary pattern and that polar and lateral axes are determined independently in this species.  相似文献   

7.
Our analysis of head segmentation in the locust embryo reveals that the labrum is not apical as often interpreted but constitutes the topologically fused appendicular pair of appendages of the third head metamere. Using molecular, immunocytochemical and retrograde axonal staining methods we show that this metamere, the intercalary segment, is innervated by the third brain neuromere-the tritocerebrum. Evidence for the appendicular nature of the labrum is firstly, the presence of an engrailed stripe within its posterior epithelium as is typical of all appendages in the early embryo. Secondly, the labrum is innervated by a segmental nerve originating from the third brain neuromere (the tritocerebrum). Immunocytochemical staining with Lazarillo and horseradish peroxidase antibodies reveal that sensory neurons on the labrum contribute to the segmental (tritocerebral) nerve via the labral nerve in the same way as for the appendages immediately anterior (antenna) and posterior (mandible) on the head. All but one of the adult and embryonic motoneurons innervating the muscles of the labrum have their cell bodies and dendrites located completely within the tritocerebral neuromere and putatively derive from engrailed expressing tritocerebral neuroblasts. Molecular evidence (repo) suggests the labrum is not only appendicular but also articulated, comprising two jointed elements homologous to the coxa and trochanter of the leg.  相似文献   

8.
温晓敏  吴贯夫  赵尔宓 《四川动物》2005,24(4):459-462,F0003
对倭蛙属(Nanorana)已知3种:高山倭蛙(Nanorana parkeri)、倭蛙(N. pleskei)和腹斑倭蛙(N. ventripunctata)的肩带作了连续切片后进行Masson染色,发现其上喙骨(epicoracoid)的融合与重叠的状况与虎纹蛙(Rana rugulosa)较相似,而与无尾目中其它物种已知的肩带形态存在较大的差异.倭蛙属和虎纹蛙等与已知肩带类型的蛙亚科其它的物种在系统进化中可能来源于不同的最近共同祖先.  相似文献   

9.
Fragments of the desert moss Syntrichia caninervis Mitt. were grown on the surface of moistened sand to assess their regeneration capacity. The plant material was collected in two different years (2014 and 2015) and divided into five fragment classifications (stem apices, green leaves, yellow-green leaves, brown leaves and stems). All fragments of the stem apices, green leaves and stems regenerated within 10 days of culture while some fragments of yellow-green leaves (two 2014 fragments and one 2015 fragment) and brown leaves (three 2014 fragments and three 2015 fragments) died. Fragments of stem, stem apices and green leaves regenerated more quickly, produced longer protonemata and more shoots as compared to fragments of yellow-green and brown leaves. These differences were statistically significant but there was no difference in regeneration between the fragments from 2014 and 2015. Differential regeneration and proliferation of different plant fragments has important implications for the clonal propagation of S. caninervis in the Gurbantunggut Desert.  相似文献   

10.
对倭蛙属(Nanorana)已知3种:高山倭蛙(Nanorana parkeri)、倭蛙(N.pleskei)和腹斑倭蛙(N.ventripunctata)的肩带作了连续切片后进行Masson染色,发现其上喙骨(epicoracoid)的融合与重叠的状况与虎纹蛙(Rana rugulosa)较相似,而与无尾目中其它物种已知的肩带形态存在较大的差异。倭蛙属和虎纹蛙等与已知肩带类型的蛙亚科其它的物种在系统进化中可能来源于不同的最近共同祖先。  相似文献   

11.
Previous studies involving nerve interactions and limb regenerative processes were carried out on adult newts after their forelimbs were amputated through the distal radius and ulna and fused end-to-end. On the basis of limb regeneration results at the junction of the fused limbs, it was postulated that regenerating nerves from each limb (i.e., nerves of opposite polarity) would not invade the foreign territory of the contralateral limb if it were already normally innervated. A direct study of this nerve interaction, however, was not made in this earlier study. The present investigation was designed to obtain direct histological and electrophysiological evidence for the interaction of nerves of opposite regenerating polarity in fused newt forelimbs. The primary objective was to determine how the regenerating nerves would interact in the establishment of innervation territories-first, at the fusion zone, which represents the junction of the normal innervation territories of the nerves of each limb; and secondly, half way up one of the limbs, where interaction would occur in a territory normally innervated by only one of the regenerating nerves. The results showed that when nerves of opposite regenerating polarity approached one another at the junction of the fused limbs a discontinuation of axonal growth occurred; no indication of overlap of nerves into foreign territory was seen. When the nerves were allowed to interact within one of the fused limbs, however, an overlap of nerve fibers and a functional "double innervation" of that limb was demonstrated. These results are discussed in terms of possible mechanisms for the establishment of innervation territories in salamander limbs. The question of nerve-muscle reinnervation specificity is also raised.  相似文献   

12.
王哈利  曹同庚 《动物学报》1991,37(4):402-407
在伍氏游仆虫(Euplotes woodruffi)接合后体发育过程中,已呈退化状态的老大核后碎块,在细胞第二次形态发生时,逐渐恢复其正常形态结构。T形新大核原基向后延伸而与恢复正常形态的老大核后碎块紧密靠拢。此时在光镜下观察,很容易误认为二者已融合为一。但在接合后体分裂之前,老大核后碎块再次瓦解,T形大核原基缩短成棒状而与老大核后碎块分开,此时二者界限分明。细胞分裂后,残存的老大核后碎块停留于后子虫中,最后被吸收。几个关键时期大核原基和老大核后碎块DNA含量的测定,也证明新老大核不融合。本文还讨论了老大核后碎块在有性过程中的功能。  相似文献   

13.
Forelimbs of the adult mud frog Rana rugosa, when amputated midway through the zeugopodium, regenerate heteromorphically. The resulting regenerative outgrowths were mostly rod shaped and consisted of a cartilaginous core, in which the base was ossified, and muscle elongated distally along the cartilage, the whole being covered by connective tissue and skin. The tip of the regenerating muscle reached a point distally about one third of the length of the regenerative outgrowths. When the innervation of forelimb stumps was augmented by surgical diversion of the ipsilateral sciatic nerve, the amputated limbs regenerated mostly as spatula-shaped outgrowths, which were longer than those of normally innervated forelimbs. Such hyperinnervated regenerates exhibited less ossification of cartilage, or sometimes none at all. However, the regeneration of muscle was more extensive. That is, it reached more than half way along the regenerative outgrowth. Furthermore, denervation resulted in the absence of regeneration in all cases examined. These results clearly indicate that limb regeneration in Rana rugosa is dependent upon the degree of innervation, not only for the early stages of regeneration, but also for the growth and differentiation of the regenerative outgrowth.  相似文献   

14.
Summary Axolotl (Ambystoma mexicanum) forearms were divided, by an incision between the radius and ulna, to produce anterior and posterior halves. These were prevented from fusing together again by a graft of head skin and amputated through the wrist. This procedure enabled independent regeneration from both halves of the stump. Anterior half stumps produced a single digit while the posterior halves mainly regenerated three digits, the two halves together making a single hand. Treatment with retinoic acid, injected intraperitoneally four days after amputation, abolished regeneration from the posterior half stump and produced proximo-distally duplicated regenerates from the anterior half. The duplicated regenerates had in most cases a complete four digit hand and were therefore more than proximalised regenerates from the anterior side of the limb. Replacement of anterior limb skin with head skin had no effect on the response of the regenerating limb to retinoic acid. In species where application of retinoic acid induces anterior-posterior duplications, these are always derived from the anterior side of the limb. The results presented here show that the morphogenic effects of retinoic acid in inducing proximo-distal duplications are also due to its effects on the anterior tissues of the limb.Excellent technical assistance was provided by Carole Ross and Marjory Shiach and useful discussion were had with Paul Martin, David Wilson and Gavin Swanson  相似文献   

15.
Dorsal iris from the eyes of adult Notophthalmus viridescens was transplanted into the blastema of regenerating limbs, subcutaneously in the limb or shoulder region, into the dorsal fin of larval newts and into the hindbrain of larval Ambystoma maculatum. The iris implants into the blastema regenerated lens vesicles or lenses with fibers in 40–75% of the cases. Multiple lenses were found in a few instances. No lenses developed from iris implants into the dorsal fin. Twenty percent of subcutaneous implants of iris formed lenses or lens vesicles, but lens regeneration from implants into the brain occurred only rarely. Denervation of the limb at the time of iris transplantation into the blastema greatly reduced the number of lenses regenerated. Studies on nerve fiber distribution in dorsal fin, subcutaneous areas, and denervated and innervated regenerating limbs, using the Bodian method, showed a general correlation between density of nerve fibers in the implant site and the incidence of lens regeneration from iris implants into that site. These results provide some evidence for a trophic action of nerve fibers on lens regeneration from the iris.  相似文献   

16.
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha.  相似文献   

17.
Abstract. The polychaete Dipolydora commensalis is an obligate symbiont of hermit crabs and produces a burrow along the columella of the gastropod shells they inhabit. Adults of D. commensalis have short palps that they use to feed on particles dropped or brought in by the respiratory currents of hosts. To determine whether hermit crabs influence palp length, specimens of D. commensalis were isolated in glass capillary tubes and the growth of palps was measured over a 3‐week period. Palp length was also measured in worms isolated in gastropod shells with or without hermit crabs for 2 weeks. In addition, to determine whether adults of D. commensalis have regeneration capabilities like those of free‐living relatives, worms were cut at the fifth or 15th setiger and then monitored for 35 d. Worms extracted from shells and placed into capillary tubes had initial palp lengths of 1.0±0.4 mm (n=17); after isolation, palps were 40% longer (1.4±0.4 mm, n=17). Worms in gastropod shells with hermit crabs had an average palp length of 0.9±0.4 mm (n=31), whereas worms in shells without hermit crabs had palps that were 33% longer (1.2±0.5 mm, n=40). Adults of D. commensalis are capable of regeneration; 35 d after ablation at setigers 5 or 15, the average number of anterior setigers regenerated was 5 (n=15) and 9±1.3 (n=13), respectively. The average number of posterior setigers regenerated from the 15 setiger anterior fragments was 11±6 (n=10). The findings suggest that the palps (and sometimes anterior ends) of the worms are exposed during feeding and are cut during movement of the hermit crab. In the laboratory worms can live for >4 years, considerably longer than the functional life span of most gastropod shells inhabited by hermit crabs.  相似文献   

18.
Summary Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later.In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The present experiments provide a direct proof of utilization of donor satellite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.  相似文献   

19.
侯连生  庞延斌 《动物学报》1991,37(3):325-331
冠突伪尾柱虫(Pseudvurostyla cristata) 含约70枚大核。我们用显微手术横切G1期细胞,得前后两块相等断片;分别培养。60小时后,断片再生完成。在再生过程中,随细胞体积增大,大核数目也增加。大核的数目和细胞体积存在着一定的均衡关系。在细胞无性分裂过程中,许多大核改组后,融合成一个融合大核。这个融合大核具两个仔虫的大核数目和DNA量。我们用显微手术得到含融合大核的后断片。在后断片再生后恢复的虫体内,我们发现本应分配到两个仔虫中去的大核数目,被限制在一个虫体的大核数目上。这说明了细胞质可以影响和调节大核的数目。并还证明了这种虫体大核DNA量较正常虫的大核DNA量约多一倍。其中大部分虫体分裂时,大核不经改组就开始融合和分裂;从而使DNA量回复正常。同讨还发现小部分虫体通过排出大核多余核物质方式来调节大核DNA量。这些现象说明了细胞核质之间存在着一种调节相对平衡和相互协调的机制。  相似文献   

20.
Intraspecifically fused protoplasts of soybean were found tobe capable of cell wall regeneration and limited mitotic activityover a period of several weeks. When interspecific fusion wasaccomplished between soybean and crabgrass protoplasts a cellwall was regenerated around the aggregate, but no mitotic activitywas observed. (Received October 26, 1971; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号