首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper reports the effects of different diuretic factors on the Malpighian tubules of beetles. Calcitonin (CT)-like peptides from silkmoth and mosquito increase fluid secretion in a dose-dependent manner in the tubules of Tenebrio molitor, but the cockroach CT-like peptide, Dippu-DH(31), has no effect. Thapsigargin induces a small but significant increase in tubule secretion rates. The interactions between different factors in mealworm tubules were explored by testing CT-like peptides, thapsigargin and the mealworm CRF-related diuretic factor Tenmo-DH(37) in various combinations, but no synergistic effects were observed. C-terminal fragments of the CRF-related diuretic peptides Locmi-DH(46) and Dippu-DH(46) fail to increase fluid secretion in mealworm tubules, unlike their corresponding whole peptides. Cross-reactivity of factors between beetle species was investigated using the scarabaeid Onthophagus gazella. Tenmo-DH(37) increases fluid secretion in isolated tubules of O. gazella in a dose-dependent manner, revealing a high degree of cross-reactivity in this distantly related beetle species. However, homogenates of O. gazella brains inhibited fluid secretion in mealworm tubules.  相似文献   

3.
Regulatory peptides in fruit fly midgut   总被引:1,自引:0,他引:1  
Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3 was abundantly expressed in the midgut, Ilp3 was not expressed in endocrine cells, but in midgut muscle.  相似文献   

4.
Immunoreactivity against peptides of the allatostatin family having a typical YXFGL-NH2 C-terminus has been localized in different areas of the central nervous system, stomatogastric nervous system and gut of the cockroach Blattella germanica. In the protocerebrum, the most characteristic immunoreactive perikarya are situated in the lateral and median neurosecretory cell groups. Immunoreactive median neurosecretory cells send their axons around the circumesophageal connectives to form arborizations in the anterior neuropil of the tritocerebrum. A group of cells in the lateral aspect of the tritocerebrum project to the antennal lobes in the deutocerebrum, where immunoreactive arborizations can be seen in the periphery of individual glomeruli. Nerve terminals were shown in the corpora allata. These terminals come from perikarya situated in the lateral neurosecretory cells in the pars lateralis and in the subesophageal ganglion. Immunoreactive axons from median neurosecretory cells and from cells positioned in the anteriormost part of the tritocerebrum enter together in the stomatogastric nervous system and innervate foregut and midgut, especially the crop and the valve between the crop and the midgut. The hindgut is innervated by neurons whose perikarya are located in the last abdominal ganglion. Besides immunoreactivity in neurons, allatostatin-immunoreactive material is present in endocrine cells distributed within the whole midgut epithelium. Possible functions for these peptides according to their localization are discussed. Arch. Insect Biochem. Physiol. 37:269–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The Malpighian tubules of Tenebrio molitor provide a model system for interpreting the actions of endogenous diuretic and antidiuretic peptides. The effects of diuretic (Tenmo-DH(37)) and antidiuretic (Tenmo-ADFa) peptides and their respective second messengers (cyclic AMP and cyclic GMP) on basolateral (V(bl)) and transepithelial (V(te)) potentials of Tenebrio Malpighian tubules were determined using conventional microelectrodes. In the presence of 6 mmol l(-1) Ba(2+), Tenmo-DH(37) (100 nmol l(-1)) reversibly hyperpolarized V(bl) and depolarized V(te). A similar response was seen with the addition of 1 mmol l(-1) cyclic AMP; however, the apical membrane potential (V(ap)) then showed a hyperpolarization, whereas a depolarization of V(ap) was observed with Tenmo-DH(37). Bafilomycin A(1) (5 micromol l(-1)) inhibited fluid secretion of stimulated tubules and reversed the hyperpolarization of V(bl) in response to Tenmo-DH(37). In response to 100 nmol l(-1) Tenmo-ADFa or 1 mmol l(-1) cyclic GMP, V(bl) and V(te) depolarized, although cyclic GMP affected membrane potentials somewhat differently by causing an initial hyperpolarization of V(bl) and V(te). In high [K(+)]-low [Na(+)] Ringer, 1 mmol l(-1) amiloride decreased fluid secretion rates, and depolarized both V(bl) and V(te). Amiloride significantly decreased luminal pH in paired experiments, indicating the presence of a K(+)/nH(+) exchanger in tubule cells of Tenebrio. The results suggest that the endogenous factors and their second messengers stimulate/inhibit fluid secretion by acting on the apical V-ATPase, basolateral K(+) transport, and possibly Cl(-) transport.  相似文献   

6.
Summary Separate antisera were raised to the N- and C-terminal half of the diuretic hormone from Manduca sexta. Antisera against the two halves of this peptide recognized the same cells in M. sexta, and preabsorption of the antisera with the peptides used as antigens abolished the immunoreactivity, confirming their specificity. The antisera reacted with two median neurosecretory cells on each side of the protocerebral groove in larvae, and with a group of about 80 small median neurosecretory cells in the adult, as well as their axons to, and their axon terminals in, the corpora cardiaca. During the early pupal stages, small cells, which are possibly derived from a common neuroblast, differentiate into immunoreactive neurosecretory cells, which explains the large increase in cell numbers in the adult. In the sleepy sulphur butterfly, Eurema nicippe, homologous median neurosecretory cells in the adult were immunoreactive with both antisera.  相似文献   

7.
Pabla N  Lange AB 《Peptides》1999,20(10):1159-1167
The midgut of the African migratory locust, Locusta migratoria, was found to contain endocrine-like cells that stained positively for locustatachykinin I (Lom TK I)-like immunoreactivity. These cells were distributed in an unequal manner throughout the midgut of the locust, with a greater density of Lom TK I-like immunoreactive endocrine-like cells occurring in the posterior region of the midgut. These singly occurring cells appear elongate with an apical extension projecting toward the midgut lumen and a smaller projection extending towards the midgut basal lamina. No immunoreactive neuronal processes were detected along the midgut wall. Radioimmunoassays revealed that the female midgut contained two to three times more Lom TK I-like material than the male midgut, and radioimmunoassay coupled to high-performance liquid chromatography analysis revealed that at least five locustatachykinin isoforms appear to be present in the midgut. This distribution of Lom TK I-like material suggests possible functional differences in the various regions of the midgut. The role that these cells may play in locust midgut secretory activity and motility remains unknown. However, the addition of synthetic Lom TK I through IV to a ring type midgut muscle preparation stimulated contraction of midgut circular muscles, suggesting a possible physiological role for these peptides. Dose-response curves constructed for Lom TK I-IV revealed that the peptide-induced contractions increased in a dose-dependent manner.  相似文献   

8.
Clark L  Agricola HJ  Lange AB 《Peptides》2006,27(3):549-558
Proctolin-like immunoreactivity (PLI) was widely distributed in the locust, Locusta migratoria, within the central, peripheral and stomatogastric nervous systems, as well as the digestive system and retrocerebral complex. Proctolin-like immunoreactivity was observed in cells and processes of the brain and all ganglia of the ventral nerve cord. Of interest, PLI was found in the lateral neurosecretory cells, which send axons within the paired nervi corporis cardiaci II (NCC II) to the corpus cardiacum (CC). The CC contained extensive processes displaying PLI, which continued on within the paired nervi corporis allata (NCA) to the paired corpora allata (CA) where the axons entered and branched therein. The frontal and hypocerebral ganglia of the stomatogastric nervous system contained PLI within processes, resulting in a brightly staining neuropile. Each region of the gut contained PLI in axons and processes of varying patterns and densities. The paired ingluvial ganglia contained PLI, including an extensively stained neuropile and immunoreactive axons projecting through the nerves to the foregut. The hindgut contained PLI within longitudinal tracts, with lateral projections originating from the 8th abdominal ganglion via the proctodeal nerve. The midgut contained PLI in a regular latticework pattern with many varicosities and blebs. No difference in PLI in cells and processes of the central nervous system (CNS) was found between males and females.  相似文献   

9.
A tryptophanyl-tRNA synthetase (TrpRS)-immunoreactivity is localized in various neurosecretory cells of all ganglia of the central nervous system of the Orthoptera Locusta migratoria, except in deutocerebrum, and in endocrine cells of the midgut. It has been observed that TrpRS-like material never co-localizes either with CCK-like or octopamine-like material. TrpRS immunoreactive perikarya and processes that ramify extensively throughout the neuropiles have been detected in the protocerebrum, optic lobes, tritocerebrum, suboesophageal, thoracic and abdominal ganglia. In the lateral protocerebrum, a particular TrpRS pathway different from the lateral gastrin cholecystokinin (CCK-8(s] pathway is revealed, certain of these processes terminating in the glandular part of the corpora cardiaca. In the metathoracic ganglion, have been observed numerous immunoreactive cell bodies and processes in the neuropiles. Some of them constitute a major pathway and which are distinct from octopamine (OA) cells but in close vicinity with the latter. In the midgut immunopositive TrpRS-like cells are dispersed among the regenerative and digestive cells of the epithelium; they are different from gastrin-cholecystokinin positive cells. The various TrpRS-like immunoreactivities identified in Locusta indicate that TrpRS-like material may occur in different tissues of organisms other than Vertebrates. These results suggest also that TrpRS-like enzyme could be involved in functions other than aminoacylation, as in Vertebrates.  相似文献   

10.
Summary A tryptophanyl-tRNA synthetase (TrpRS)-immunoreactivity is localized in various neurosecretory cells of all ganglia of the central nervous system of the Orthoptera Locusta migratoria, except in deutocerebrum, and in endocrine cells of the midgut. It has been observed that TrpRS-like material never co-localizes either with CCK-like or octopamine-like material.TrpRS immunoreactive perikarya and processes that ramify extensively throughout the neuropiles have been detected in the protocerebrum, optic lobes, tritocerebrum, suboesophageal, thoracic and abdominal ganglia. In the lateral protocerebrum, a particular TrpRS pathway different from the lateral gastrin cholecystokinin (CCK-8(s)) pathway is revealed, certain of these processes terminating in the glandular part of the corpora cardiaca. In the metathoracic ganglion, have been observed numerous immunoreactive cell bodies and processes in the neuropiles. Some of them constitute a major pathway and which are distinct from octopamine (OA) cells but in close vicinity with the latter. In the midgut immunopositive TrpRS-like cells are dispersed among the regenerative and digestive cells of the epithelium; they are different from gastrin-cholecystokinin positive cells.The various TrpRS-like immunoreactivities identified in Locusta indicate that TrpRS-like material may occur in different tissues of organisms other than Vertebrates. These results suggest also that TrpRS-like enzyme could be involved in functions other than aminoacylation, as in Vertebrates.  相似文献   

11.
The developmental profile of a family of three FLRFamide (Phe-Leu-Arg-Phe-NH2) peptides in the tobacco hornworm, Manduca sexta, revealed regional-specific expression patterns within the segmental ganglia. Levels of the three peptides—F7G (GNSFLRFamide), F7D (DPSFLRFamide), and F10 (pEDVVHSFLRFamide)—were always higher in the thoracic than abdominal ganglia. The predominant peptide also differed regionally, with F7G being highest in the thoracic ganglia and F7G and F10 being equivalent in the abdominal ganglia. Furthermore, we found regional-specific transient declines in ganglion peptide levels temporally correlated to ecdysis. Thoracic ganglion peptide levels declined at each molt, while abdominal ganglion levels declined over a period of 2 days after ecdysis. The decline in central levels was accompanied by an increase in levels in peripheral neurohemal sites, the transverse nerves (TNs). These observations suggest peptides were released from neurosecretory cells (NSCs) at ecdysis. Distinct sets of thoracic and abdominal NSCs and their processes in peripheral neurohemal sites were immunoreactive, supporting the biochemical data. These results also suggest the regional differences may arise from cellular-specific expression patterns for this family of peptides. In addition, fine immunoreactive processes were observed traveling between TNs and skeletal muscles, suggestive of myotropic actions. We propose that the release of different M. sexta FLRFamides from regionally distinct NSCs leads to a coordinated modulation of skeletal and visceral muscles that facilitate ecdysis. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 469–485, 1998  相似文献   

12.
Immunocytochemical staining based on a peroxidase-antiperoxidase method showed neurosecretory cells (NSC) reactive to bovine insulin in five of 18 paraldehyde fuchsin-positive neurosecretory regions (NSR) in the synganglion of unfed adult Dermacentor variabilis. This is the first report of a neuropeptide in an ixodid tick. The insulin-specific immunoreactive cells included the posterior medial group of the protocerebral center, posterior group of dorsal opisthosomal center, anterior lateral group of the dorso-lateral cheliceral center, dorsal group of the frontal stomodeal center, and anterior group of the ventral palpal center. After feeding and mating, females no longer had immunoreactive cells in three of five NSR found in virgin, unfed females. However, two cells of the posterior group in dorsal opisthosomal center and anterior lateral group of the dorso-lateral cheliceral center remained immunoreactive throughout feeding. Fed, mated males continued to display immunoreactive cells in four of five NSR found in the virgin, unfed males. All developmental stages of nymphs examined had insulin-specitic immunoreactive cells in two of the five NSR found in unfed adults, including two positively stained cells of the posterior group in dorsal opisthosomal center and anterior group of ventral palpal neurosecretory center.  相似文献   

13.
Because leucokinins stimulate diuresis in some insects, we wished to identify the neurosecretory cells in Manduca sexta that might be a source of leucokinin-like neurohormones. Immunostaining was done at various stages of development, using an antiserum to leucokinin IV. Bilateral pairs of neurosecretory cells in abdominal ganglia 3–7 of larvae and adults are immunoreactive; these cells project via the ipsilateral ventral nerves to the neurohemal transverse nerves. The immunoreactivity and size of these lateral cells greatly increases in the pharate adult, and this change appears to be related to a period of intensive diuresis occurring a few days before adult eclosion. Relationships of these neurons to cells that are immunoreactive to a M. sexta diuretic hormone were also investigated. Diuretic hormone and leucokinin immunoreactivity are co-localized in the lateral neurosecretory cells and their neurohemal projections. A median pair of leucokinin-immunoreactive, and a lateral pair of diuretic hormone-immunoreactive neurons in the larval terminal abdominal ganglion project to neurohemal release sites within the cryptonephridium. The immunoreactivity of these cells is lost as the cryptonephridium is eliminated during metamorphosis. This loss appears to be related to the change from the larval to adult pattern of diuresis.  相似文献   

14.
The ultrastructure of neurohaemal areas on abdominal nerves of the blood-sucking bug Rhodnius prolixus was investigated. Four types of axon terminals were found, distinguished by the morphology of their neurosecretory granules. By use of post-embedding immunogold labelling, granules in Type I axon terminals were shown to contain serotonin-like immunoreactive material, and granules in Type II axon terminals were shown to contain FMRFamide-like immunoreactive material. There was no colocalization of these materials. It is suggested that Type III terminals contain peptidergic diuretic hormone, which has previously been reported to be present in electron-dense neurosecretory granules in this neurohaemal area. The identity of material in Type IV terminals is unknown.  相似文献   

15.
16.
The midgut of the female mosquitoAedes aegypti was studied immunohistologically with antisera to various regulatory peptides. Endocrine cells immunoreactive with antisera to perisulfakinin, RFamide, bovine pancreatic polypeptide, urotensin 1, locustatachykinin 2 and allatostatins A1 and B2 were found in the midgut. Perisulfakinin, RFamide and bovine pancreatic polypeptide all react with the same, about 500 endocrine cells, which were evenly distributed throughout the posterior midgut, with the exception of its most frontal and caudal regions. In addition, these antisera recognized three to five neurons in each ingluvial ganglion and their axons, which ran longitudinally over the anterior midgut, as well as axons innervating the pyloric sphincter. The latter axons appear to be derived from neurons located in the abdominal ganglia. Antisera to two different allatostatins recognized about 70 endocrine cells in the most caudal area of the posterior midgut and axons in the anterior midgut whose cell bodies were probably located in either the brain or the frontal ganglion. Antiserum to locustatachykinin 2 recognized endocrine cells present in the anterior midgut and the most frontal part of the posterior midgut, as well as about 50 cells in the most caudal region of the posterior midgut. Urotensin 1 immunoreactivity was found in endocrine cells in the same region as the perisulfakinin-immunoreactive cells, but no urotensin-immunoreactive axons were found in the midgut. Double labeling experiments showed that the urotensin and perisulfakinin immunoreactivities were located in different cells. Such experiments also showed that the locustatachykinin and allatostatin immunoreactivities in the most caudal area of the posterior midgut were present in different cells. No immunoreactivity was found in the mosquito midgut when using antisera to corazonin, allatotropin or leucokinin IV. Since these peptides have either been isolated from, or can reasonably be expected to be present in mosquitoes, it was concluded that these peptides are not present in the mosquito midgut.  相似文献   

17.
A 30-amino acid diuretic peptide was isolated from the corpora cardiaca-corpora allata complexes and, separately, from medial neurosecretory cells of the Sphingid moth, Manduca sexta. The peptide was found to have the following sequence, determined by automated Edman degradation and mass spectrometry: SFSVNPAVDILQHRYMEKV AQNNRNFLNRV-NH2. We have named the peptide Mas-DP II. The peptide was synthesized and shown to possess diuretic activity in decapitated moths. Mas-DP II is related by sequence homology to a 41-amino acid diuretic peptide identified previously from M. sexta, and it belongs to the family of corticotropin releasing factor-like peptides.  相似文献   

18.
El-Salhy  M.  Falkmer  S.  Kramer  K. J.  Speirs  R. D. 《Cell and tissue research》1983,232(2):295-317
In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain. The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, alpha- and beta-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6-13), cholecystokinin (CCK) mid-portion (sequences 9-20 and 9-25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin. All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.  相似文献   

19.
Several cardioactive peptides have been identified in insects and most of them are likely to act on the heart as neurohormones. Here we have investigated the cardioactive properties of members of a family of insect tachykinin-related peptides (TRPs) in heterologous bioassays with two coleopteran insects, Tenebrio molitor and Zophobas atratus. Their effects were compared with the action of the pentapeptide proctolin. We tested the cardiotropic activity of LemTRP-4 isolated from the midgut of the cockroach Leucophaea maderae, CavTK-I and CavTK-II isolated from the blowfly Calliphora vomitoria. The semi-isolated hearts of the two coleopteran species were strongly stimulated by proctolin. We observed a dose dependent increase in heartbeat frequency (a positive chronotropic effect) and a decrease in amplitude of contractions (a negative inotropic effect). In both beetles the TRPs are less potent cardiostimulators and exert lower maximal frequency responses than proctolin. LemTRP-4 applied at 10(-9)-10(-6) M was cardiostimulatory in both species inducing an increase of heart beat frequency. The amplitude of contractions was stimulated only in Z. atratus. CavTK-I and CavTK-II also exerted cardiostimulatory effects in Z. atratus at 10(-9)-10(-6) M. Both peptides stimulated the frequency, but only CavTK-II increased the amplitude of the heart beat. In T. molitor, however, the CavTKs induced no significant effect on the heart.Immunocytochemistry with antisera to the locust TRPs LomTK-I and LomTK-II was employed to identify the source of TRPs acting on the heart. No innervation of the heart by TRP immunoreactive axons could detected, instead it is possible that TRPs reach the heart by route of the circulation. The likely sources of circulating TRPs in these insects are TRP-immunoreactive neurosecretory cells of the median neurosecretory cell group in the brain with terminations in the corpora cardiaca and endocrine cells in the midgut.In conclusion, LemTRP-4, CavTK-I and CavTK-II are less potent cardiostimulators than proctolin and also exert stimulatory rather than inhibitory action on amplitude of contractions. The differences in the responses to proctolin and TRPs suggest that the peptides regulate heart activity by different mechanisms.  相似文献   

20.
Johard HA  Coast GM  Mordue W  Nässel DR 《Peptides》2003,24(10):1571-1579
In insects primary urine is produced by the Malpighian tubules under hormonal control. Here we have analysed the effects of the peptide locustatachykinin I (Lom-TK-I) on secretion in isolated Malphigian tubules. We also mapped the distribution of Lom-TK immunoreactivity in the gut in comparison with Locusta diuretic hormone (Lom-DH) and serotonin, two other factors that are active on locust tubules. Lom-TK-I produces an immediate, potent and long-lasting stimulation of fluid secretion. Furthermore, we show that Lom-TK-I acts synergistically with Lom-DH on fluid secretion and demonstrate that Lom-TKs are co-localised with Lom-DH in endocrine cells of the midgut ampullae. Thus, the two peptides might be released together to act synergistically on fluid secretion. Also serotonin and Lom-DH act synergistically and we can demonstrate a plexus of serotonin-containing axon processes over the midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号