首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously found that azido-containing beta-diketo acid derivatives (DKAs) are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase (IN) (X. Zhang et al., Bioorg. Med. Chem. Lett., 13:1215-1219, 2003). To characterize the intracellular mechanisms of action of DKAs, we analyzed the antiviral activities of two potent azido-containing DKAs with either a monosubstitution or a disubstitution of azido groups, using single- and multiple-replication-cycle assays. Both azido-containing DKAs significantly inhibited HIV-1 infection in 293T, CEM-SS, and H9 cells (50% inhibitory concentration = 2 to 13 micro M) and exhibited low cytotoxicity (50% cytotoxic concentration = 60 to 600 micro M). Inhibition of HIV-1 IN in vivo was demonstrated by the observation that previously described L-708,906 resistance mutations in HIV-1 IN (T66I and T66I/S153Y) also conferred resistance to the azido-group-containing DKAs. In vitro assays and in vivo analysis indicated that the DKAs did not significantly inhibit the 3' processing and selectively inhibited the strand transfer reaction. In addition, quantitative PCR indicated that two-long-terminal-repeat (2-LTR) circles were elevated in the presence of the azido-containing DKAs, confirming that HIV-1 IN was the intracellular target of viral inhibition. To gain insight into the mechanism by which the DKAs increased 2-LTR-circle formation of 3'-processed viral DNAs, we performed extensive DNA sequencing analysis of 2-LTR-circle junctions. The results indicated that the frequency of deletions at the circle junctions was elevated from 19% for the untreated controls to 32 to 41% in the presence of monosubstituted (but not disubstituted) DKAs. These results indicate that the structure of the DKAs can influence the extent of degradation of viral DNA ends by host nucleases and the frequency of deletions at the 2-LTR-circle junctions. Thus, sequencing analysis of 2-LTR-circle junctions can elucidate the intracellular mechanisms of action of HIV-1 IN inhibitors.  相似文献   

2.
Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116-119 and 140-166. In the conventional MD simulation, the coordination of Mg(2+) was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60-68, 116-119, and 140-149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg(2+) in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors.  相似文献   

3.
A series of 6-aryl-2,4-dioxo-5-hexenoic acids, were synthesized and tested against HIV-1 in cell-based assays and against recombinant HIV-1 integrase (rIN) in enzyme assays. Compound 8a showed potent antiretroviral activity (EC(50)=1.5 microM) and significant inhibition against rIN (strand transfer: IC(50)=7.9 microM; 3'-processing: IC(50)=7.0 microM). A preliminary molecular modeling study was carried out to compare the spatial conformation of 8a with those of L-731988 (4) and 5CITEP (7) in the IN core.  相似文献   

4.
The diketo acid (DKA) class of HIV-1 integrase inhibitors are thought to function by chelating divalent metal ions within the enzyme catalytic center. However, differences in mutations conferring resistance among sub-families of DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA-binding sites, biotin-tagged biphenyl ketone-containing 2,4-dioxobutanoic acids were prepared as DKA photoaffinity probes. Introduction of biotin was obtained by means of Huisgen [3+2] cycloaddition 'click chemistry.' Two photoprobes, 5a and 5b, were prepared bearing short and long linker segments, respectively, between the biotin and DKA nucleus. The greatest inhibitory potency was shown by 5b, which inhibited 3'-processing and strand transfer reactions with IC50 values of > 333 microM and 12.4 microM, respectively. In cross-linking assays designed to measure disruption of substrate DNA binding, the photoprobes behaved similarly to a reference DKA inhibitor. Analogues 5a and 5b represent novel photoaffinity ligands, which may be useful in clarifying the HIV-1 binding interactions of DKA inhibitors.  相似文献   

5.
Integration is essential for retroviral replication and gene therapy using retroviral vectors. Human immunodeficiency virus, type 1 (HIV-1), integrase specifically recognizes the terminal sequences of each long terminal repeat (LTR) and cleaves the 3'-end terminal dinucleotide 5'-GT. The exposed 3'-hydroxyl is then positioned for nucleophilic attack and subsequent strand transfer into another DNA duplex (target or chromosomal DNA). We report that both the terminal cytosine at the protruding 5'-end of the long terminal repeats (5'-C) and the integrase residue Gln-148 are critical for strand transfer. Proximity of the 5'-C and Gln-148 was demonstrated by disulfide cross-linking. Cross-linking is inhibited by the inhibitor 5CITEP 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone. We propose that strand transfer requires a conformational change of the integrase-viral (donor) DNA complex with formation of an H-bond between the N-3 of the 5'-C and the amine group of Gln-148. These findings have implications for the molecular mechanisms coupling 3'-processing and strand transfer as well as for the molecular pharmacology of integrase inhibitors.  相似文献   

6.
The diketo acid L-708,906 has been reported to be a selective inhibitor of the strand transfer step of the human immunodeficiency virus type 1 (HIV-1) integration process (D. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller, Science 287:646-650, 2000). We have now studied the development of antiviral resistance to L-708,906 by growing HIV-1 strains in the presence of increasing concentrations of the compound. The mutations T66I, L74M, and S230R emerged successively in the integrase gene. The virus with three mutations (T66I L74M S230R) was 10-fold less susceptible to L-708,906, while displaying the sensitivity of the wild-type virus to inhibitors of the RT or PRO or viral entry process. Chimeric HIV-1 strains containing the mutant integrase genes displayed the same resistance profile as the in vitro-selected strains, corroborating the impact of the reported mutations on the resistance phenotype. Phenotypic cross-resistance to S-1360, a diketo analogue in clinical trials, was observed for all strains. Interestingly, the diketo acid-resistant strain remained fully sensitive to V-165, a novel integrase inhibitor (C. Pannecouque, W. Pluymers, B. Van Maele, V. Tetz, P. Cherepanov, E. De Clercq, M. Witvrouw, and Z. Debyser, Curr. Biol. 12:1169-1177, 2002). Antiviral resistance was also studied at the level of recombinant integrase. Single mutations did not appear to impair specific enzymatic activity. However, 3' processing and strand transfer activities of the recombinant integrases with two (T66I L74M) and three (T66I L74M S230R) mutations were notably lower than those of the wild-type integrase. Although the virus with three mutations was resistant to inhibition by diketo acids, the sensitivity of the corresponding enzyme to L-708,906 or S-1360 was reduced only two- to threefold. As to the replication kinetics of the selected strains, the replication fitness for all strains was lower than that of the wild-type HIV-1 strain.  相似文献   

7.

Background

HIV-1 integrase (IN) is an emerging drug target, as IN strand transfer inhibitors (INSTIs) are proving potent antiretroviral agents in clinical trials. One credible theory sees INSTIs as docking at the cellular (acceptor) DNA-binding site after IN forms a transitional complex with viral (donor) DNA. However, mapping of the DNA and INSTI binding sites within the IN catalytic core domain (CCD) has been uncertain.

Methods

Structural superimpositions were conducted using the SWISS PDB and Cn3D free software. Docking simulations of INSTIs were run by a widely validated genetic algorithm (GOLD).

Results

Structural superimpositions suggested that a two-metal model for HIV-1 IN CCD in complex with small molecule, 1-(5-chloroindol-3-yl)-3-(tetrazoyl)-1,3-propandione-ene (5CITEP) could be used as a surrogate for an IN/viral DNA complex, because it allowed replication of contacts documented biochemically in viral DNA/IN complexes or displayed by a crystal structure of the IN-related enzyme Tn5 transposase in complex with transposable DNA. Docking simulations showed that the fitness of different compounds for the catalytic cavity of the IN/5CITEP complex significantly (P < 0.01) correlated with their 50% inhibitory concentrations (IC50s) in strand transfer assays in vitro. The amino acids involved in inhibitor binding matched those involved in drug resistance. Both metal binding and occupation of the putative viral DNA binding site by 5CITEP appeared to be important for optimal drug/ligand interactions. The docking site of INSTIs appeared to overlap with a putative acceptor DNA binding region adjacent to but distinct from the putative donor DNA binding site, and homologous to the nucleic acid binding site of RNAse H. Of note, some INSTIs such as 4,5-dihydroxypyrimidine carboxamides/N -Alkyl-5-hydroxypyrimidinone carboxamides, a highly promising drug class including raltegravir/MK-0518 (now in clinical trials), displayed interactions with IN reminiscent of those displayed by fungal molecules from Fusarium sp., shown in the 1990s to inhibit HIV-1 integration.

Conclusion

The 3D model presented here supports the idea that INSTIs dock at the putative acceptor DNA-binding site in a IN/viral DNA complex. This mechanism of enzyme inhibition, likely to be exploited by some natural products, might disclose future strategies for inhibition of nucleic acid-manipulating enzymes.  相似文献   

8.
The insertion of viral DNA into the host chromosome is an essential step in the replication of HIV-1, and is carried out by an enzyme, HIV-1 integrase (IN). Since the latter has no human cellular counterpart, it is an attractive target for antiviral drug design. Several IN inhibitors having activities in the micromolar range have been reported to date. However, no clinically useful inhibitors have yet been developed. Recently reported diketo acids represent a novel and selective class of IN inhibitors. These are the only class which appear to selectively target integrase and two of the inhibitors, L-708,906 and L-731,988, are the most potent inhibitors of preintegration complexes described to date.The X-ray crystal structure of the IN catalytic domain complexed with a diketo acid derivative inhibitor, 5CITEP, has recently been determined. Although the structure is of great value as a platform for drug design, experimental data suggest that crystal packing effects influence the observed inhibitor position. This has been confirmed by computational docking studies using the latest version (3.0) of the AutoDock program, which has been shown to give results largely consistent with available experimental data. Using AutoDock 3.0 and SYBYL6.6 we have modeled the complexes of IN with the diketo acid inhibitors so as to identify the enzyme binding site. In the quest for novel, potent and selective small molecule inhibitors, we present here a new approach to peptide inhibitor design using a, b- unsaturated (dehydro) residues, which confer a unique conformation on a peptide sequence. Based on the above models, we selected a tetrapeptide sequence containing a dehydro-Phe residue, which was found to have an open conformation as ascertained from its X-ray crystal structure. Docking results on this peptide led us to propose a modification at the C-terminal end. The modified peptide was found to dock in a similar position as the diketo acid inhibitors and was predicted to have a comparable potency.  相似文献   

9.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

10.
Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors   总被引:1,自引:0,他引:1  
Czyz A  Stillmock KA  Hazuda DJ  Reznikoff WS 《Biochemistry》2007,46(38):10776-10789
Diketoacid (DKA) compounds have been shown to inhibit HIV-1 integrase by a mechanism that involves sequestration of the active site metals. Because HIV-1 integrase and Tn5 transposase have similar active site architectures and catalytic mechanisms, we investigated whether DKA analogues would inhibit Tn5 transposase activity and provide a model system to explore the mechanisms of action of these inhibitors. A screen of several hundred DKA analogues identified several with activity against Tn5 Tnp. Six DKA inhibitors used in this study manifested a variety of effects on different transposition steps suggesting that different analogues may have different binding contacts with transposase. All DKA compounds inhibited paired end complex (PEC) formation in which the nucleoprotein complex required for catalysis is assembled. Dissociation of PECs by some DKA compounds indicates that these inhibitors can decrease PEC stability. Four DKA compounds inhibited the two cleavage steps releasing transposon DNA from flanking DNA, and one of these four compounds preferentially inhibited the second cleavage step. The differential effect of this inhibitor on the second cleavage event indicates that cleavage of the two transposon-donor DNA boundaries is a sequential process requiring a conformational change. The requirement for a conformational change between cleavage events was also demonstrated by the inability of transposase to perform second cleavage at 25 degrees C. Finally, all six compounds inhibit strand transfer, the final step of Tn5 transposition. Two of the compounds that inhibited strand transfer have no effect on DNA cleavage. The strand transfer inhibition properties of various DKA compounds was sensitive to the structure of the 5'-non-transferred strand, suggesting that these compounds bind in or near the transposase active site. Other results that probe compound binding sites include the effects of active site mutations and donor DNA on DKA compound inhibition activities. Thus, DKA inhibitors will provide an important set of tools to investigate the mechanism of action of transposases and integrases.  相似文献   

11.
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.  相似文献   

12.
Integrase of the human immunodeficiency virus type-1 (HIV-1) recognizes specific sequences located in the U3 and U5 regions at the ends of viral DNA. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-aminonucleosides or non-nucleoside 1,3-propanediol insertions at the third and terminal positions and studied their interactions with HIV-1 integrase. Both modifications introduced a local structural distortion in the DNA double helix. Replacement of the terminal nucleosides by corresponding 2'-aminonucleosides had no significant effect on integrase activity. We used an integrase substrate bearing terminal 2'-aminonucleosides in both strands to synthesize a duplex with cross-linked strands. This duplex was then used to determine whether terminal base pair disruption is an obligatory step of retroviral DNA 3'-processing. Processing of the cross-linked analog of the integrase substrate yielded a product of the same length as 3'-processing of the wild-type substrate but the reaction efficiency was lower. Replacement of the third adenosine in the processed strand by a corresponding 2'-aminonucleoside did not affect integrase activity, whereas, its replacement by 1,3-propanediol completely inhibited 3'-processing. Both modifications of the complementary thymidine in the nonprocessed strand increased the initial rate of 3'-processing. The same effect was observed when both nucleosides, at the third position, were replaced by corresponding 2'-aminonucleosides. This indicates that the local duplex distortion facilitated the cleavage of the phosphodiester bond. Thus, a localized destabilization of the third A-T base pair is necessary for efficient 3'-processing, whereas 3'-end-fraying is important but not absolutely required.  相似文献   

13.
Human immunodeficiency virus type 1 integrase is one of three viral enzymes, and it realizes a key process of the viral replication cycle, i.e. viral DNA integration into infected cell genome. Integrase recognizes nucleotide sequences located at the ends of the viral DNA U3 and U5 LTRs and catalyzes 3'-processing and strand transfer reactions. To study the interactions between integrase and viral DNA at present work, we used modified integrase substrates mimicking the terminal U5 LTR sequence and containing non-nucleoside insertions in one or/and both strands. It is shown that the substrate modifications have no influence on the integrase binding rate, while the heterocyclic bases removal in the 5th and 6th substrate positions and in the 3rd position of the substrate processed strand distinctly inhibits the integrase catalytic activity. This fact demonstrates these bases significance for the active enzyme/substrate complex formation. On the contrary, modification of the 3rd position within substrate non-processed strand stimulates 3'-processing. Since heterocyclic base elimination results in disruption of the DNA complementary and staking interactions, this result shows that DNA double helix destabilization close to the cleaved bond promotes the 3'-processing.  相似文献   

14.
The gene encoding an integrase of Mason-Pfizer monkey virus (M-PMV) is located at the 3'-end of the pol open reading frame. The M-PMV integrase has not been previously isolated and characterized. We have now cloned, expressed, isolated, and characterized M-PMV integrase and compared its activities and primary structure with those of HIV-1 and other retroviral integrases. M-PMV integrase prefers untranslated 3'-region-derived long-terminal repeat sequences in both the 3'-processing and the strand transfer activity assays. While the 3'-processing reaction catalyzed by M-PMV integrase was significantly increased in the presence of Mn(2+) and Co(2+) and was readily detectable in the presence of Mg(2+) and Ni(2+) cations, the strand transfer activity was strictly dependent only on Mn(2+). M-PMV integrase displays more relaxed substrate specificity than HIV-1 integrase, catalyzing the cleavage and the strand transfer of M-PMV and HIV-1 long-terminal repeat-derived substrates with similar efficiency. The structure-based sequence alignment of M-PMV, HIV-1, SIV, and ASV integrases predicted critical amino acids and motifs of M-PMV integrase for metal binding, interaction with nucleic acids, dimerization, protein structure maintenance and function, as well as for binding of human immunodeficiency virus type 1 and Rous avian sarcoma virus integrase inhibitors 5-CI-TEP, DHPTPB and Y-3.  相似文献   

15.
The novel dinucleotide 5'-phosphate, [(L,D)-pIsodApdC], discovered in our laboratory, is a strong inhibitor of HIV-1 integrase for both the 3'-processing and the strand transfer steps. The rationale used in this molecular design was that residues immediately upstream of the dinucleotide cleavage site in the 3'-processing step might provide critical recognition/binding sites on integrase. The rationale for the second type of inhibitors was based on the elimination products (linear and cyclic dinucleotides) of 3'-processing. However, while the linear dinucleotide 5'-phosphate (pdGpdT) was active, its cyclic counterpart was inactive against both wild-type and mutant HIV integrase.  相似文献   

16.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

17.
LEDGF/p75 is known to enhance the integrase strand transfer activity in vitro, but the underlying mechanism is unclear. Using an integrase assay with a chemiluminescent readout adapted to a 96-well plate format, the effect of LEDGF/p75 on both the 3'-processing and strand transfer steps was analyzed. Integrase inhibitors of the strand transfer reaction remained active in the presence of LEDGF/p75, but displayed 3- to 7-fold higher IC50 values. Our analyses indicate that, in the presence of 150 nM LEDGF/p75, active integrase/donor DNA complexes were increased by 5.3-fold during the 3'-processing step. In addition, these integrase/donor DNA complexes showed a 4.5-fold greater affinity for the target DNA during the subsequent strand transfer step. We also observed a 3.7-fold increase in the rate constant of catalysis of the strand transfer step when 150 nM LEDGF/p75 was present during the 3'-processing step. In contrast, when LEDGF/p75 was added at the beginning of the strand transfer step, no increase in either the concentration of active integrase/donor DNA complex or its rate constant of strand transfer catalysis was observed. This observation suggested that the integrase/donor DNA formed in the absence of LEDGF/p75 became refractory to the stimulatory effect of LEDGF/p75. Instead, this LEDGF/p75 added at the start of the strand transfer step was able to promote the formation of a new cohort of active integrase/donor DNA complexes which became functional with a delay of 45 min after LEDGF/p75 addition. We propose a model whereby LEDGF/p75 can only bind integrase before the latter binds donor DNA whereas donor DNA can engage either free or LEDGF/p75-bound integrase.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (~15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3'-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3'-OH processing. It follows that the IN-viral DNA complex is "trapped" by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.  相似文献   

19.
20.
We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC(50)s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号