首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-celled protonemata of the fern Adiantum capillus-veneris, kept under continuous red light, grew with a very low rate of cell division, and the cell cycle was arrested in the early G1 phase. Cell division was induced by transferring the protonemata to the dark after various light treatments, and the duration of component phases in the cell cycle was determined by a continuous-labelling technique with 3H-thymidine. Blue light irradiation greatly reduced the duration of the G1 phase but did not affect that of other phases. The greater the fluence of blue light, the shorter was the duration of G1 phase was observed. In contrast, a brief exposure of red-light-grown protonemata to far-red light given immediately before the dark incubation showed no effect on the duration of G1 S and M phases but significantly extended that of the G2 phase. The effect of far-red light on the G2 phase was reversed by red light, and the effects of red and far-red light were repeatedly reversible. The progression in the M phase was shown by means of a time-lapse video system to be not at all influenced by any pre-irradiation described above.  相似文献   

2.
Synopsis The influence of the light:dark cycle and temperature on the embryonic development, especially diapause, of the annual fish Nothobranchius korthausae was investigated. The variability of the frequency of diapause II during constant L:D cycle and temperature, but at different times of the year, was also studied. In agreement with previous studies it appeared that diapause I does practically not occur in N. korthausae (and other Nothobranchius species), even under sub-optimal conditions which are known to induce diapause II and III. Only at very low temperatures, a first developmental arrest could be induced during the dispersed phase, as well as during the reaggregation phase. Diapause II and III can be induced more easily, by exposing the embryos to low (sub-optimal) temperatures and short light periods (or constant darkness). Both diapauses are inhibited or terminated at high temperature and long light periods (12L:12D). The occurrence of an indirect light:dark response via the adult fishes could not be demonstrated. At moderate temperatures and in constant darkness (or short light periods) considerable variability in diapause II-frequency was observed. This could be an intrinsic feature of annual fish development, constituting a strategy for better survival of the species.  相似文献   

3.
Some diapause characteristics were studied in a strain of the spider mite. Tetranychus urticae. which had been reared on bean plants in the laboratory for over 15 yr. The diapause induction response curve was of the long-day type, showing a sharply defined critical daylength of 13 hr 50 min. In constant darkness no diapause induction occurred, but with a photoperiod of 1L:23D diapause incidence was already complete. A thermoperiod with a 5°C amplitude induced diapause in combination with a short-day photoperiod only when the low phase of the thermoperiod coincided with the scotophase. The same thermoperiod did not induce any diapause in constant darkness. The photoperiodic reaction of the laboratory strain used in these experiments appeared to remain constant over a very long period of time and to be independent of the diapause history of previous generations of mites.Although photoperiodic sensitivity was demonstrated during the whole postembryonic development, sensitivity was maximal at the end of the protonymphal instar and declined rapidly during the deutonymphal instar. Only 2 inductive cycles of 10L:14D were required to induce up to 62% diapause if the mites were kept in continuous darkness during the remainder of their development. Long days or continuous light could reverse the inductive effect of a sequence of short-day cycles previously applied to the mites.Light breaks of 1 hr duration applied at different times during the dark period of a 10L:14D photoperiod generated a sharp bimodal response curve with two discrete points of sensitivity to the light breaks at 10 hr after ‘dusk’ and 10 hr before ‘dawn’, thus showing a remarkable similarity with the results obtained in light break experiments with some species of insects.  相似文献   

4.
The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma   总被引:1,自引:0,他引:1  
Larval cultures of the flesh-fly, Sarcophaga argyrostoma, were raised in experimental light cycles with periods (T) of 21 to 72 hr, each cycle containing a photoperiod of 4 to 20 hr of white light. This ‘resonance’ technique revealed periodic maxima (~24 hr apart) of pupal diapause, thereby demonstrating an endogenous circadian component in the photoperiodic clock. The positions of these maxima of pupal diapause suggested that the oscillation, like that controlling the pupal eclosion rhythm in Drosophila pseudoobscura, is ‘damped out’ by photoperiods longer than about 11 to 12 hr, but restarts at dusk whereupon it runs with circadian periodicity in a protracted dark period. With photoperiods shorter than 12 hr, however, the two diapause maxima were less than 24 hr apart, suggesting that an additional component, possibly a ‘dawn hour-glass’, was modifying the position of the first peak.Both photoperiod and the period of the driving light cycle (T) were shown to affect the length of larval development (the sensitive period) and the number of calendar days needed to raise the incidence of pupal diapause to 50 per cent (the required day number, RDN). Peaks of diapause induction were shown to be the result of an interaction between a long sensitive period (slow development) and a low RDN, whereas troughs in diapause induction were the result of an interaction between a short sensitive period (fast development) and a higher RDN.Larvae of S. argyrostoma are unable to distinguish (in a photoperiodic sense) between 12 and 18 hr of red light (600 nm).  相似文献   

5.
Megoura produces parthenogenetic virginoparae in long day conditions, gamic oviparae in short days. The nature of this photoperiodic response has been analysed by rearing parent apterae in a wide range of circadian and non-circadian light cycles. By varying the light and dark components independently in a two-component cycle it has been established that the time measuring function is associated primarily with the dark period. There is no evidence that an endogenous circadian oscillation is implicated: thus (a) the ‘short day’ response is abolished by ‘night interruptions’ positioned in the early or late night. But this bimodal response pattern remains unchanged when the duration of the ‘main’ photoperiod is varied from ca. 6 hr to at least 25·5 hr. The stability of the maxima within the scotophase is inconsistent with the ‘coincidence’ models of photoperiodic timing that have been proposed. It is suggested that the essential timing process operates on the hour-glass principle, beginning anew with the onset of each period of darkness; (b) night interruption experiments employing very long (up to 72 hr) scanned dark periods yielded response maxima explicable in terms of the hour-glass hypothesis but did not reveal any circadian relationship between the maxima.The ‘dark reaction’ comprises a sequence of four stages, definable by the effects of light. Stage 1, extending from dark hr 0 to ca. 2·5, is fully photoreversible: at the next dark period the entire timing sequence is repeated up to the 9·5 hr critical night length. Towards the end of stage 1 reversibility is gradually lost and after a light interruption the reaction is resumed from a later time equivalent than dark hr 0; the subsequent critical night length is therefore reduced. The extent of the photoreversal is related to light duration. The period of maximum light insensitivity (stage 2) is attained at the end of the fourth hour. From ca. dark hr 5 to just short of the critical night length light exerts an increasingly promotive action which favours the production of virginoparae. This dark process is not photoreversible. Stage 4, which begins at hr 9·5, marks the end of the timing sequence. Light will not then annul the non-promotive action of the previous long night.Light has three effects which are determined by its duration and position within the cycle. The two terminal effects, mentioned above, are associated with the interception of dark stages 1 and 3 by either short (1 hr) or longer photoperiods. Light also prepares or primes the dark period timer. Thus the critical length is increased, and timing accuracy lost, if the preceding photoperiod is less than ca. 6 hr. Light during stage 4 has a priming action but no terminal function. Repeated cycles are ‘read’ in various ways, depending on the cycle structure. For example, if light intercepts stage 3, a two-component cycle is interpreted as the overlapping sequence light/dark/light. One and the same photoperiod then acts terminally in respect of the preceding dark period and as a primer for the next dark period.There is also a mechanism for summing the promotive effects produced by repeated interruption of dark stage 3. With complex (four-component) cycles both halves of the same cycle may contribute. ‘Product accumulation’ falls below threshold if the frequency of presentation of a given promotive cycle is too low. This occurs if there are very long, relatively non-promotive dark components. Such cycles are accepted as ‘continuous darkness’.  相似文献   

6.
Night interruption experiments were used to investigate the behavior of the clock controlling diapause induction in the mosquito, Aedes atropalpus. The data from these experiments indicated that the clock included a circadian oscillator which was phase set at dusk. Following this event the oscillator proceeded to drive a nightly rhythm of sensitivity to light. This rhythm included a photoinducible phase where light interruption inhibited diapause. The photoinducible phase was fixed, occurring 7 to 9 hr after dusk in all photoperiod regimens tested. The photoinducible phase was followed by a refractory phase, which continued until dawn. During the refractory period light did not inhibit diapause. These observations indicated that the circadian clock behaved like an interval timer which was set at dusk. The rhythm of sensitivity to light, an inherited time scale, limited the induction of diapause to seasonal periods when nights were longer than 9 hr. As a result, diapause was induced only when the daylength dropped below the critical photoperiod of L15:D9 (hours of light:hours of dark).A ‘T’ experimental design was used to confirm the importance of the length of the night in clock controlled induction of diapause in this mosquito.  相似文献   

7.
Both diapause induction and diapause termination are under photoperiodic control in the lepidopteran, Ostrinia nubilalis. In the present study, induction of diapause was maximal in light-dark (LD) cycles that contained 12 hr of light alternating with 12 hr of darkness (LD 12:12). Termination of diapause was maximal in LD 16:8. Diapause termination also occurred rapidly in non-24-hr LD cycles that possessed an 8-hr dark phase. In each of these cases, the period of the LD cycle was not important. Diapause termination did not, however, occur rapidly in non-24-hr LD cycles that lacked an 8-hr dark phase. Thus, the clock mechanism underlying the termination response resembles an hourglass in its behavior. This is in contrast with what is known about induction of diapause. Here it has been demonstrated that the circadian system is somehow involved. It is thus possible that two different physiological clocks underlie these responses.  相似文献   

8.
Three night-break experiment protocols were utilized in an attempt to help clarify the role of the circadian system in photoperiodic time measurement in the European corn borer, Ostrinia nubilalis. Larvae raised in a light-dark (LD) cycle consisting of 12 hr of light alternating with 12 hr of darkness (LD 12:12), at a constant temperature of 30 degrees C, enter a state of arrested growth and development known as diapause (Takeda and Skopik, 1985). In the present research (Experiment 1), the induction of diapause was prevented by 1-hr light pulses that systematically scanned the dark phase of LD 12:12. Thus, the importance of 12 hr of uninterrupted darkness for maximal induction of diapause is stressed. The same experimental protocol applied to larvae already in diapause (Experiment 2), however, resulted in a bimodal curve of diapause termination. Although this result is consistent with the proposition that a nonperiodic hourglass timer underlies this event (Skopik and Takeda, 1986), it does not rule out the circadian system. Like LD 12:12, a thermoperiod in constant darkness (12 hr at 4 degrees C alternating with 12 hr at 25 degrees C) also induces diapause. Scanning such a thermoperiod with 1-hr light pulses, however, resulted in only a small effect (reduction of diapause) when light fell in the early to middle part of the warm phase (Experiment 3). Thus, the time-measuring system, under these experimental conditions, showed only a weak response to light. This unexpected result is discussed with respect to Experiment 1 and two general models that have been proposed to account for photoperiodic time measurement in insects.  相似文献   

9.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

10.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
This review discusses possible evolutionary trends in insect photoperiodism, mainly from a chronobiological perspective. A crucial step was the forging of a link between the hormones regulating diapause and the systems of biological rhythms, circadian or circannual, which have independently evolved in eukaryotes to synchronize physiology and behaviour to the daily cycles of light and darkness. In many of these responses a central feature is that the circadian system resets to a constant phase at the beginning of the subjective night, and then ‘measures’ the duration of the next scotophase. In ‘external coincidence’, one version of such a clock, light now has a dual role. First, it serves to entrain the circadian system to the stream of pulses making up the light/dark cycle and, second, it regulates the nondiapause/diapause switch in development by illuminating/not illuminating a specific light sensitive phase falling at the end of the critical night length. Important work by A. D. Lees on the aphid Megoura viciae using so‐called ‘night interruption experiments' demonstrates that pulses falling early in the night lead to long‐day effects that are reversible by a subsequent dark period longer than the critical night length and also show maximal sensitivity in the blue–green range of the spectrum. Pulses falling in the latter half of the night, however, produce long‐day effects that are irreversible by a subsequent long‐night and show a spectral sensitivity extending into the red. With movement to higher latitudes, insects develop genetic clines in various parameters, including critical night length, the number of long‐night cycles needed for diapause induction, the strength of the response, and the ‘depth’ or intensity of the diapause thus induced. Evidence for these and other types of photoperiodic response suggests that they provided strong selective advantages for insect survival.  相似文献   

12.
Tukey , H. B., Jr ., and H. J. Ketellapper . (California Inst. Tech., Pasadena.) Length of the light-dark cycle and plant growth. Amer. Jour. Bot. 50(2): 110–115. Illus. 1963.—It has been shown that the length of the light-dark cycle which causes maximal growth of tomato, pea, peanut, and soybean plants is close to 24 hr for cycles consisting of equal periods of light and darkness. The exact optimum for tomato plants was determined by temperature; the optimal cycle length was 20 hr at 30 C and 27–30 hr at 14 C. Such an interaction between temperature and cycle length was not found in pea plants, because peas were less sensitive to cycle length than peanuts, tomatoes, and soybeans and did not respond to changes in cycle length of 2–3 hr. The response to cycle length was not influenced by the conditions in which the seedlings had been raised prior to the treatment. Seedlings raised in a 16-hr light, 8-hr dark regime responded in the same manner as those raised in continuous light. The response to cycle lengths of 18, 24, 36, and 48 hr was not changed qualitatively by the temperature during the growth determination. Small changes in cycle length had no characteristic effects on the rates of photosynthesis, respiration or stem elongation. Stem elongation showed a rapid and initial increase in rate when the light was turned off. It was concluded that plants possess an endogenous time-measuring device with a period of 24 hr. For maximal growth to occur the external periodicity must be synchronized with the endogenous period of the plant. Efforts to obtain direct evidence for this hypothesis were not successful since no overt rhythms could be found in tomato plants.  相似文献   

13.
Abstract. Both oscillator and hourglass features are found in the photoperiodic response that controls the pupal winter diapause of Mamestra brassicae. The expression of oscillatory response to extended long-night cycles is temperature dependent, i.e. circadian resonance appears at 23 and 25oC but not at 20 and 28oC. At 20oC, scanning of extended scotophases by a short light pulse does not reveal any clear circadian rhythmicity. However, a circadian feature of the photoperiodic response is indicated even at 20oC by a bistability phenomenon, i.e. either one of the two dark periods in symmetrical skeleton photoperiods determines the diapause response depending on the phase angle with the preceding (entraining) light-dark cycles. At 20 and 25oC, the incidence of diapause increases as a function of the number of light–dark cycles regardless of the cycle length (T) , if T is 24 h or 2 X 24h (with a 12 h light period). A non-diel cycle (r=36h) is less effective, suggesting that disturbance of the circadian organization partly impairs the diapause-inducing function. The inductive effect of a long night is largely affected by temperature, and becomes saturated with eight cycles at 20oC and 14 cycles at 25oC. Presumably, an hourglass mechanism measures the dark time, and a circadian component involved in some later sequence of the photoperiodic response may or may not be expressed depending on the mode of interaction between them.  相似文献   

14.
Artificial lighting is a merit of a ‘plant factory’, which might be utilized to suppress an increase in pest population. We investigated the effects of extending the light phase on diapause induction in the two-spotted spider mite (TSSM), Tetranychus urticae. TSSM were reared at 18°C under light phases ranging from 2 to 64 h combined with a constant dark phase of 16 h in aluminum bottles, with white light emitting diodes attached inside to minimize fluctuations in air temperature between the light and dark phases. Diapause was induced in adult TSSM females when the light phase was 24 h or shorter, and diapause induction was inhibited when the light phase extended over 32 h. The development of deutonymphs was delayed under a diapause-inducing photoperiod. Diapause inducing photoperiods may suppress an increase in the TSSM population, by slowing down development and reproduction.  相似文献   

15.
The effects of light, darkness, and changes in light intensityon the phase and period of the endogenous rhythm in the rateof CO2 output of excised leaves of Bryophyllum fedtschenkoihave been examined. The duration, intensity, and wavelength of a short light treatment,and the point in the cycle at which it is administered, determinethe degree of phase shift induced in a rhythm persisting indarkness. When light treatments of 3 and 6 hours' duration,at an intensity of 3,000 lux, are applied between the peaksthe phase is completely reset, the first post-treatment peakoccurring 18–19 hours after the end of the treatment.The degree of phase shift is therefore determined not by theduration of the treatment but by the time at which the treatmentterminates. One hour's illumination has little or no effect.The phase is unaffected when light treatments of up to 5 hours'duration at an intensity of 3,000 lux are applied at the crestof a peak. Over the range 8-3,000 lux the intensity of lightduring a 6-hour treatment applied between the peaks does notaffect the efficiency with which that treatment completely resetsthe phase. At an intensity of 2 lux, however, the phase delayis equal to the duration of the treatment. A 6-hour red-light treatment (850 ergs/cm.2/sec.) applied betweenthe peaks completely resets the phase whereas blue light (10,860ergs/cm.2/sec.) has no effect on the phase but induces a slightprotraction of the period. Moreover, continuous red light inhibitsthe rhythm, which recommences in blue light. A rhythm is induced in illuminated leaves when the light intensityis either gradually or suddenly reduced by at least 80 per cent.Whether a given intensity of illumination inhibits or permitsthe persistence of a rhythm depends upon the light intensityby which it is immediately preceded. A rhythm will persist in illuminated leaves for approximatelyas long as in leaves in darkness and the phase shows no correlationwith time of day. The period is unaffected by the intensityof white light (from 0-500 lux) to which the leaves are subjected.The duration of a short dark treatment, and the point in thecycle at which it is applied, determine the degree of phaseshift induced in a rhythm in illuminated leaves. The phase isreset when 3-, 6-, and 9-hour dark treatments are applied atthe crest of a peak, the amount of phase shift increasing toa maximum with 9 hours' darkness. The phase shift is not equalto the duration of the treatment. The phase is unaffected when3- and 6-hour dark treatments are applied between the peaks. The variation in the sensitivity of the phase of a rhythm persistingin darkness to short light treatments is in the opposite senseto that of a rhythm persisting in light to short dark treatments.The phase of a rhythm in illuminated leaves is completely resetwhen the leaves are transferred to continuous darkness commencingeither at the crest of, or between, the peaks. The results are discussed and compared with those of other authors.  相似文献   

16.
Vegetative plants of Xanthium strumarium (a short-day species) were induced to flower by exposure to a single 16-hr long night. By cutting off the induced leaf (half-expanded leaf) at various times, it was established that, by 8 hr after the end of the long night, a sufficient amount of floral stimulus had reached the meristem to induce a flowering response. The following sequence of events occurred in both the peripheral and central zones of the apical meristem of induced plants: 1) a rise in the mitotic index beginning at 28 hr after the end of the long night and culminating at 36 and 56 hr; 2) a stimulation of DNA synthesis starting at 32–36 hr and reaching a maximum at 60 hr; 3) an increase in nucleolus diameter starting at 32 hr. The cell population in the meristems of both vegetative and induced plants displayed a similar distribution, with about 80 % of the nuclei with the 2C amount of DNA. The comparison of the kinetic data concerning the mitotic index and DNA synthesis indicated that one of the early effects of the floral stimulus in the peripheral and central zones was the release in mitosis of cells whose nuclei were in the postsynthetic (G2) phase of the mitotic cycle. In the pith-rib meristem, the following events were recorded: 1) a stimulation of DNA synthesis starting at 20 hr; 2) a rise of the mitotic index beginning at 28 hr; 3) the vacuolation and elongation of cells starting at 48 hr. All these events occurred well before the initiation of bract and flower primordia, which began at 96 and 136 hr, respectively. Neither stimulation of mitotic activity nor flowering occurred in the meristems of plants subjected to a long night interrupted at its midpoint by a 5-min light break. The results are discussed in relation to the early events which are known to occur in the meristems of other photoperiodic species in transition to flowering.  相似文献   

17.
Aspects of clock resetting in flowering of xanthium   总被引:6,自引:5,他引:1       下载免费PDF全文
Flowering is induced in Xanthium strumarium by a single dark period exceeding about 8.3 hours in length (the critical night). To study the mechanism which measures this dark period, plants were placed in growth chambers for about 2 days under constant light and temperature, given a phasing dark period terminated by an intervening light period (1 min to several hrs in duration), and finally a test dark period long enough normally to induce flowering. In some experiments, light interruptions during the test dark period were given to establish the time of maximum sensitivity.

If the phasing dark period was less than 5 hours long, its termination by a light flash only broadened the subsequent time of maximum sensitivity to a light flash, but the critical night was delayed. In causing the delay, the end of the intervening light period was acting like the dusk signal which initiated time measurement at the beginning of the phasing dark period.

If the phasing dark period was 6 hours or longer, time of maximum sensitivity during the subsequent test dark period was shifted by as much as 10 to 14 hours. In this case the light terminating the phasing dark period acted as a rephaser or a dawn signal.

Following a 7.5-hour phasing dark period, intervening light periods of 1 minute to 5 hours did not shift the subsequent time of maximum sensitivity, but with intervening light periods longer than 5 hours, termination of the light acts clearly like a dusk signal. The clock appears to be suspended during intervening light periods longer than 5 to 15 hours. It is restarted by a dusk signal. There is an anomaly with intervening light periods of 10 to 13 hours, following which time of maximum sensitivity is actually less than the usual 8 hours after dusk.

Ability of the clock in Xanthium to be rephased, suspended, restarted, or delayed, depending always upon conditions of the experiment, is characteristic of an oscillating timer and may confer upon this plant its ability to respond to a single inductive cycle. It is suggested that phytochrome may influence only the phase of the clock and not other aspects of flowering such as synthesis of flowering hormone.

  相似文献   

18.
Circadian pacemakers control both “daytime” activity and nocturnal restlessness of migratory birds, and the daily rhythm of melatonin release from the pineal has been suggested to be involved in the control of migratory activity. To study the phase relations between the two activity components during entrainment and when free running, locomotor activity of bramblings (Fringilla montifringilla) was recorded continuously under a 12:12 “cool light” to “warm light” cycle (CL:WL, ca. 5000 K and ca. 2500 K, respectively) or blue light to red light cycle (BL:RL, maxima at 440 and 650 nm, respectively) at different irradiance ratios. Migratory activity was expressed primarily during the WL or RL phase of the light cycles. Under free-running conditions, the circadian periods τ correlated with the phase relations between day and night (migratory) activity components during preceding entrainment. Bramblings with migratory activity had significantly longer τ at constant light intensity than the same individuals without migratory activity. Birds with migratory activity reentrained faster after a 6h phase shift of the CL:WL cycle than birds without migratory activity. When exogenous melatonin was given in the drinking water (200 μg/mL 1% ethanol or 0.86 mM) to bramblings exposed to 12:12 CL:WL cycles with constant irradiance, the amounts of activity, which were initially higher during the WL phase of the light cycle, were suppressed to similar low levels during both light phases. The systematic changes in the amounts of activity during melatonin treatment were not correlated with consistent changes in entrainment status. The data support the hypothesis that changes in the amplitude and level of the daily melatonin cycle are involved in regulating migratory restlessness, by either allowing or inhibiting nocturnal activity. (Chronobiology International, 17(4), 471–488, 2000)  相似文献   

19.
Following inoculation of monolayer cultures of EMT6 mouse tumour cells at 105 cells, a short lag is followed by 3 days of exponential growth with a population doubling time of 12 hr. A plateau cell number is reached between days 4 and 5 and is maintained for at least 8 days. During exponential growth, the pulse 3H-TdR labelling index is 55–60%, all cells are in cycle, and the median cycle time is 11–12 hr. For the first 3 days of plateau phase, the labelling index is about 25 % and there is considerable cell loss. The cell cycle is 32–40 hr, and S-phase is very long. Later in plateau phase, the labelling index falls to <2 % and there is little cell loss. The changes in kinetics occurring in EMT6 cultures are discussed with reference to reported changes occurring in other cell lines.  相似文献   

20.
The hypothesis was tested that the well-known maximal sensitivity to a light break at or near the middle of the dark period of short-day plant Xanthium is correlated with a specific stage of leaf initiation. Samples were collected at various hours before and during noninductive 6-hr dark periods. Lengths of leaf primordia were calculated from serial transverse sections. The reproducible results confirmed that leaf initiation occurred at or near middark under the 18:6 hr light: dark growing conditions. The author suggests the working hypothesis that for a light break to be effective in nullifying the effect of a “long” night in photoperiodically sensitive plants, the light must react with a specific early stage of leaf initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号