首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage activation by CpG DNA requires toll-like receptor 9 and the adaptor protein MyD88. Gram-negative bacterial lipopolysaccharide also activates macrophages via a toll-like receptor pathway (TLR-4), but we and others have reported that lipopolysaccharide also stimulates tyrosine phosphorylation in macrophages. Herein we report that exposure of RAW 264.7 murine macrophages to CpG DNA (but not non-CpG DNA) provoked the rapid tyrosine phosphorylation of vav1. PP1, a selective inhibitor of src-related tyrosine kinases, blocked both the CpG DNA-mediated tyrosine phosphorylation of vav1 and the CpG DNA-mediated up-regulation of macrophage tumor necrosis factor secretion and inducible nitric-oxide synthase protein accumulation. Furthermore, we found that the inducible expression of any of three dominant interfering mutants of vav1 (a truncated protein, vavC; a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and a form with an in-frame deletion of six amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt) consistently inhibited CpG DNA-mediated up-regulation of tumor necrosis factor secretion and inducible nitric-oxide synthase protein accumulation in RAW-TT10 macrophages. Finally, we determined that CpG DNA-mediated up-regulation of NF-kappaB activity (but not mitogen-activated protein kinase activation) was inhibited by preincubation with PP1 or by expression of the truncated vavC mutant. Taken together, our results indicate that the tyrosine phosphorylation of vav1 by a src-related tyrosine kinase or kinases plays an important role in the macrophage response to CpG DNA.  相似文献   

2.
3.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

4.
5.
Signal regulatory protein alpha (SIRPalpha) is a glycoprotein receptor that recruits and signals via the tyrosine phosphatases SHP-1 and SHP-2. In macrophages SIRPalpha can negatively regulate the phagocytosis of host cells and the production of tumor necrosis factor alpha. Here we provide evidence that SIRPalpha can also stimulate macrophage activities, in particular the production of nitric oxide (NO) and reactive oxygen species. Ligation of SIRPalpha by antibodies or soluble CD47 triggers inducible nitric oxide synthase expression and production of NO. This was not caused by blocking negative-regulatory SIRPalpha-CD47 interactions. SIRPalpha-induced NO production was prevented by inhibition of the tyrosine kinase JAK2. JAK2 was found to associate with SIRPalpha in macrophages, particularly after SIRPalpha ligation, and SIRPalpha stimulation resulted in JAK2 and STAT1 tyrosine phosphorylation. Furthermore, SIRPalpha-induced NO production required the generation of hydrogen peroxide (H(2)O(2)) by a NADPH oxidase (NOX) and the phosphatidylinositol 3-kinase (PI3-K)-dependent activation of Rac1, an intrinsic NOX component. Finally, SIRPalpha ligation promoted SHP-1 and SHP-2 recruitment, which was both JAK2 and PI3-K dependent. These findings demonstrate that SIRPalpha ligation induces macrophage NO production through the cooperative action of JAK/STAT and PI3-K/Rac1/NOX/H(2)O(2) signaling pathways. Therefore, we propose that SIRPalpha is able to function as an activating receptor.  相似文献   

6.
Previous studies have shown that activation of the RON receptor tyrosine kinase inhibits inducible NO production in murine peritoneal macrophages. The purpose of this study is to determine whether inflammatory mediators such as LPS, IFN-gamma, and TNF-alpha regulate RON expression. Western blot analysis showed that RON expression is reduced in peritoneal macrophages collected from mice injected with a low dose of LPS. The inhibition was seen as early as 8 h after LPS challenge. Experiments in vitro also demonstrated that the levels of the RON mRNA and protein are diminished in cultured peritoneal macrophages following LPS stimulation. TNF-alpha plus IFN-gamma abrogated macrophage RON expression, although individual cytokines had no significant effect. Because LPS and TNF-alpha plus IFN-gamma induce NO production, we reasoned that NO might be involved in the RON inhibition. Two NO donors, S-nitroglutathione (GSNO) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), directly inhibited macrophage RON expression when added to the cell cultures. Blocking NO production by NO inhibitors like TGF-beta prevented the LPS-mediated inhibitory effect. In Raw264.7 cells transiently transfected with a report vector, GSNO or SNAP inhibited the luciferase activities driven by the RON gene promoter. Moreover, GSNO or SNAP inhibited the macrophage-stimulating protein-induced RON phosphorylation and macrophage migration. We concluded from these data that RON expression in macrophages is regulated during inflammation. LPS and TNF-alpha plus IFN-gamma are capable of down-regulating RON expression through induction of NO production. The inhibitory effect of NO is mediated by suppression of the RON gene promoter activities.  相似文献   

7.
Toll-like receptor 4 (TLR4) induces an innate immune response in mammals by recognizing lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria. In this study, we show that tyrosine kinase Syk constitutively associates with TLR4 in THP-1 cells. As previously reported in peripheral blood mononuclear cells, TLR4 gets inducibly tyrosine phosphorylated upon LPS engagement in THP-1 cells. Piceatannol, a pharmacological inhibitor of the tyrosine kinase Syk, abrogates TLR4 tyrosine phosphorylation at low doses. The kinetics of TLR4 tyrosine phosphorylation in THP-1 cells coincides with an early wave of Syk tyrosine phosphorylation. Additionally, serine threonine kinase interleukin-1 (IL1) receptor-associated kinase 1 (IRAK-1) is transiently recruited to the complex containing adaptor molecule MyD88, TLR4 and Syk within 1 min of LPS engagement and dissociates by 30 min. Finally, the inhibition of Syk with piceatannol has no effect on LPS-mediated release of cytokines IL6, IL1beta, tumor necrosis factor-alpha, neither on chemokines macrophage inhibitory protein (MIP)1alpha, MIP1beta, monocyte chemoattractant protein -1, IL8, Groalpha and RANTES. However, IL10 and IL12p40 releases are significantly inhibited. Our findings implicate Syk as a novel modulator of LPS-mediated TLR4 responses in human monocytic cells and shed insight into the kinetics of early complex formation upon LPS engagement.  相似文献   

8.
Receptor activator of NF-kappaB ligand (RANKL) is essential for differentiation and function of osteoclasts. The negative signaling pathways downstream of RANKL are not well characterized. By retroviral transduction of RAW264.7 cells with a dominant negative Src homology 2 domain-containing phosphatase-1 (SHP-1)(C453S), we studied the role of tyrosine phosphatase SHP-1 in RANKL-induced osteoclastogenesis. Over-expression of SHP-1(C453S) significantly enhanced the number of tartrate-resistant acid phosphatase-positive multinuclear osteoclast-like cells in response to RANKL in a dose-dependent manner. RANKL induced the recruitment of SHP-1 to a complex containing TNFR-associated factor (TRAF)6. GST pull down experiments indicated that the association of SHP-1 with TRAF6 is mediated by SHP-1 lacking the two Src homology 2 domains. RANKL-stimulated IkappaB-alpha phosphorylation, IkappaB-alpha degradation and DNA binding ability of NF-kappaB were increased after over-expression of SHP-1(C453S). However, RANKL-induced phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, was unchanged. In addition, SHP-1 regulated RANKL-stimulated tyrosine phosphorylation of p85 subunit of phosphatidylinositol 3 kinase and the phosphorylation of Akt. Increased numbers of osteoclasts contribute to severe osteopenia in Me(v)/Me(v) mice due to mutation of SHP-1. Like RAW264.7 cells expressing SHP-1(C453S), the bone marrow macrophages of Me(v)/Me(v) mice generated much more osteoclast-like cells than that of littermate controls in response to RANKL. Furthermore compared with controls, RANKL induces enhanced association of TRAF6 and RANK in both RAW264.7 cells expressing SHP-1(C453S) and bone marrow macrophages from Me(v)/Me(v) mice. Therefore, SHP-1 plays a role in signals downstream of RANKL by recruitment to the complex containing TRAF6 and these observations may help to understand the mechanism of osteoporosis in Me(v)/Me(v) mice.  相似文献   

9.
We found that CKD712, an S enantiomer of YS49, strongly inhibited inducible nitric oxide synthase (iNOS) and NO induction but showed a weak inhibitory effect on cyclooxygenase-2 (COX-2) and PGE(2) induction in LPS-stimulated RAW 264.7 cells. We, therefore, investigated the molecular mechanism(s) responsible for this by using CKD712 in LPS-activated RAW264.7 cells. Treatment with either SP600125, a specific JNK inhibitor or TPCK, a NF-kappaB inhibitor, but neither ERK inhibitor PD98059 nor p38 inhibitor SB203580, significantly inhibited LPS-mediated iNOS and COX-2 induction. CKD712 inhibited NF-kappaB (p65) activity and translocation but failed to prevent JNK activation. However, AG490, a specific JAK-2/STAT-1 inhibitor, efficiently prevented LPS-mediated iNOS induction but not the induction of COX-2, and CKD712 completely blocked STAT-1 phosphorylation by LPS, suggesting that the NF-kappaB and JAK-2/STAT-1 pathways but not the JNK pathway are important for CKD712 action. Interestingly, CKD712 induced heme oxygenase 1 (HO-1) gene expression in LPS-treated cells. LPS-induced NF-kappaB and STAT-1 activation was partially prevented by HO-1 overexpression. Furthermore, HO-1 siRNA partly reversed not only the LPS-induced NF-kappaB activation and STAT-1 phosphorylation but also inhibition of these actions by CKD 712. Additionally, silencing HO-1 by siRNA prevented CKD712 from inhibiting iNOS expression but not COX-2. When examined plasma NO and PGE(2) levels and iNOS and COX-2 protein levels in lung tissues of mice injected with LPS (10 mg/kg), pretreatment with CKD712 greatly prevented NO and iNOS induction in a dose-dependent manner and slightly affected PGE(2) and COX-2 production as expected. Taken together, we conclude that inhibition of JAK-2/STAT-1 pathways by CKD 712 is critical for the differential inhibition of iNOS and COX-2 by LPS in vitro and in vivo where HO-1 induction also contributes to this by partially modulating JAK-2/STAT-1 pathways.  相似文献   

10.
Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1) is a cytosolic protein tyrosine phosphatase containing two SH2 domains in its NH2 terminus. That immunological abnormalities of the motheaten and viable motheaten mice are caused by mutations in the gene encoding SHP-1 indicates that SHP-1 plays important roles in lymphocyte differentiation, proliferation, and activation. To elucidate molecular mechanisms by which SHP-1 regulates BCR-mediated signal transduction, we determined SHP-1 substrates in B cells using the substrate-trapping approach. When the phosphatase activity-deficient form of SHP-1, in which the catalytic center cysteine (C453) was replaced with serine (SHP-1-C/S), was introduced in WEHI-231 cells, tyrosine phosphorylation of a protein of about 70 kDa was strongly enhanced. Immunoprecipitation and Western blot analyses revealed that this protein is the B cell linker protein (BLNK), also named SH2 domain leukocyte protein of 65 kDa, and that upon tyrosine phosphorylation BLNK binds to SHP-1-C/S in vitro. In vitro kinase assays demonstrated that hyperphosphorylation of BLNK in SHP-1-C/S-expressing cells was not due to enhanced activity of Lyn or Syk. Furthermore, BCR-induced activation of c-Jun NH2-terminal kinase was shown to be significantly enhanced in SHP-1-C/S transfectants. Taken collectively, our results suggest that BLNK is a physiological substrate of SHP-1 in B cells and that SHP-1 selectively regulates c-Jun NH2-terminal kinase activation.  相似文献   

11.
12.
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine phosphorylation occurs in cells exposed to the reactive oxygen species hydrogen peroxide (H2O2) suggested that this form of oxidative stress may also support PECAM-1/SHP-2 complex formation. In the present study, we show that PECAM-1 tyrosine phosphorylation in response to exposure of cells to H2O2 is reversible, involves a shift in the balance between kinase and phosphatase activities, and supports binding of SHP-2 and recruitment of this phosphatase to cell-cell borders. We speculate, however, that the unique ability of H2O2 to reversibly oxidize the reactive site cysteine residues of protein tyrosine phosphatases may result in transient inactivation of the SHP-2 that is bound to PECAM-1 under these conditions. Finally, we provide evidence that PECAM-1 tyrosine phosphorylation and SHP-2 binding in endothelial cells requires exposure to an "oxidative burst" of H2O2, but that exposure of these cells to sufficiently high concentrations of H2O2 for a sufficiently long period of time abrogates binding of SHP-2 to tyrosine-phosphorylated PECAM-1. These findings support a role for PECAM-1 as a sensor of oxidative stress, perhaps most importantly during the process of inflammation.  相似文献   

13.
Neutrophils, an essential component of the innate immune system, are regulated in part by signaling pathways involving protein tyrosine phosphorylation. While protein tyrosine kinase functions in regulating neutrophil behavior have been extensively investigated, little is known about the role for specific protein tyrosine phosphatases (PTP) in modulating neutrophil signaling cascades. A key role for Src homology 2 domain-containing phosphatase 1 (SHP-1), a PTP, in neutrophil physiology is, however, implied by the overexpansion and inappropriate activation of granulocyte populations in SHP-1-deficient motheaten (me/me) and motheaten viable (me(v)/me(v)) mice. To directly investigate the importance of SHP-1 to phagocytic cell function, bone marrow neutrophils were isolated from both me/me and me(v)/me(v) mice and examined with respect to their responses to various stimuli. The results of these studies revealed that both quiescent and activated neutrophils from motheaten mice manifested enhanced tyrosine phosphorylation of cellular proteins in the 60- to 80-kDa range relative to that detected in wild-type congenic control neutrophils. MOTHEATEN: neutrophils also demonstrated increased oxidant production, surface expression of CD18, and adhesion to protein-coated plastic. Chemotaxis, however, was severely diminished in the SHP-deficient neutrophils relative to control neutrophils, which was possibly attributable to a combination of defective deadhesion and altered actin assembly. Taken together, these results indicate a significant role for SHP-1 in modulating the tyrosine phosphorylation-dependent signaling pathways that regulate neutrophil microbicidal functions.  相似文献   

14.
Signal-regulatory proteins (SIRPs) are cell-surface glycoproteins expressed on myeloid and neural cells that have been shown to recruit SH2 domain-containing protein phosphatase 1 (SHP-1) and SHP-2 and to regulate receptor tyrosine kinase-coupled signaling. One SIRP of unknown function, designated SIRP beta 1, contains a short cytoplasmic domain that lacks sequence motifs capable of recruiting SHP-1 and SHP-2. Using a SIRP-specific mAb, we show that SIRP beta 1 is expressed in monocytes and dendritic cells and associates with the signal transduction molecule DAP12. SIRP beta 1/DAP12 complex formation was required for efficient cell-surface expression of SIRP beta 1. Stimulation of this complex induced tyrosine phosphorylation, mitogen-activated protein kinase activation, and cellular activation. Thus, SIRP beta 1 is a new DAP12-associated receptor involved in the activation of myeloid cells.  相似文献   

15.
Increasing evidence indicates that tyrosine phosphorylation, controlled by the concerted action of tyrosine kinases and protein tyrosine phosphatases (PTPs), plays important roles in retinal photoreceptor rod outer segments (ROS). We characterized PTP activity in isolated bovine ROS that is significantly inhibited by orthovanadate. Incubating ROS in the presence of exogenous Mg2+, ATP, and orthovanadate dramatically enhanced the tyrosine phosphorylation of several endogenous proteins. SHP-2, a PTP with two SH2 domains, was identified in ROS by immunoblot analysis and was found to associate with ROS membranes. Immunocytochemistry showed localization of SHP-2 in photoreceptor outer segments and possibly in the outer plexiform, inner nuclear, and inner plexiform cell layers of the retina as well. SHP-2 associated with transducin-alpha and a 97-kDa tyrosine-phosphorylated protein in ROS, suggesting the formation of a multimeric signaling complex. Based on its association with transducin-alpha and a 97-kDa protein, SHP-2 may regulate the tyrosine phosphorylation of endogenous proteins, including transducin-alpha, and may play a significant role in a novel signaling pathway in photoreceptors.  相似文献   

16.
Parasites of the Leishmania genus can rapidly alter several macrophage (MØ) signalling pathways in order to tame down the innate immune response and inflammation, therefore favouring their survival and propagation within their mammalian host. Having recently reported that Leishmania and bacterial LPS generate a significantly stronger inflammatory response in animals and phagocytes functionally deficient for the Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1), we hypothesized that Leishmania could exploit SHP-1 to inactivate key kinases involved in Toll-like receptor (TLR) signalling and innate immunity such as IL-1 receptor-associated kinase 1 (IRAK-1). Here we show that upon infection, SHP-1 rapidly binds to IRAK-1, completely inactivating its intrinsic kinase activity and any further LPS-mediated activation as well as MØ functions. We also demonstrate that the SHP-1/IRAK-1 interaction occurs via an evolutionarily conserved ITIM-like motif found in the kinase domain of IRAK-1, which we named KTIM (Kinase Tyrosyl-based Inhibitory Motif). This regulatory motif appeared in early vertebrates and is not found in any other IRAK family member. Our study additionally reveals that several other kinases (e.g. Erk1/2, IKKα/β) involved in downstream TLR signalling also bear KTIMs in their kinase domains and interact with SHP-1. We thus provide the first demonstration that a pathogen can exploit a host protein tyrosine phosphatase, namely SHP-1, to directly inactivate IRAK-1 through a generally conserved KTIM motif.  相似文献   

17.
Cancer cell resistance limits the efficacy of IFNs. In this study, we show that sodium stibogluconate (SSG) and IFN-alpha synergized to overcome IFN-alpha resistance in various human cancer cell lines in culture and eradicated IFN-alpha-refractory WM9 human melanoma tumors in nude mice with no obvious toxicity. SSG enhanced IFN-alpha-induced Stat1 tyrosine phosphorylation, inactivated intracellular SHP-1 and SHP-2 that negatively regulate IFN signaling, and induced cellular protein tyrosine phosphorylation in cancer cell lines. These effects are consistent with inactivation of phosphatases as the basis of SSG anticancer activity. Characterization of SSG by chromatography revealed that only selective compounds in SSG were effective protein tyrosine phosphatase inhibitors. These observations suggest the potential of SSG as a clinically usable protein tyrosine phosphatase inhibitor in cancer treatment and provide insights for developing phosphatase-targeted therapeutics.  相似文献   

18.
GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号