首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiovascular response of decapod crustaceans to hypoxic exposure is well documented; however, information is limited concerning the influence of reproductive state on cardiovascular demands during hypoxic exposure. Given the additional metabolic demand of reproduction, we investigated the cardiovascular adjustments employed by gravid grass shrimp Palaemonetes pugio to maintain oxygen delivery during hypoxic stress. Cardiac output values were elevated in gravid compared to nongravid grass shrimp. Gravid grass shrimp were exposed to hypoxia and the stroke volume, heart rate, cardiac output and hemolymph flow were determined using video-microscopy and dimensional analysis. Oxygen consumption rates were determined using respirometry. There where no changes in the cardiac output values of gravid females until reaching 6.8 kPa O2, with a significant redistribution of hemolymph flow at 13.7 kPa O2. Flow was significantly decreased to the anterior lateral arteries that supply the ovaries and hepatopancreas, the anterior aorta and the posterior aorta. The redistribution of hemolymph flow away from these vessels results in an enhanced hemolymph flow to the sternal artery that supplies the ventral segmental system, the gills, the buccal apparatus and the ventral nerve cord. The data suggest that during hypoxic stress, gravid females place a priority on survival.  相似文献   

2.
Estuarine assemblages of fishes and natant decapod crustaceans (i.e. nekton) comprise both permanent resident species and juveniles of coastal marine species that use estuaries primarily as nurseries. In an attempt to understand how the young of marine species successfully invade communities of permanent estuarine residents we studied potential interactions between two of the most abundant decapod crustaceans in nekton assemblages of the southeastern United States. Three years of quantitative samples from an intertidal marsh on Sapelo Island, Georgia showed that densities of the resident daggerblade grass shrimp Palaemonetes pugio were reduced during the time that juvenile white shrimp Penaeus setiferus used the estuary as a nursery. Results of a field enclosure experiment showed that white shrimp had no significant lethal or sublethal effects on adult grass shrimp. However, they did reduce survival of both juvenile and larval grass shrimp in laboratory experiments, suggesting the potential importance of a stage-dependent predatorprey interaction between the two shrimp species. The mortality rate of young grass shrimp in the presence of white shrimp was unaffected by grass shrimp density, but larvae (2.6–3.0 mm) suffered higher mortalities than did juveniles (5.0–15.0 mm). We suggest that the vulnerability of grass shrimp to predation by white shrimp is related to their molting cycle. The window of vulnerability opens more often for younger grass shrimp because they molt more frequently. When combined with losses due to other predators and competitors, the impact of early white shrimp cohorts on grass shrimp larvae and juveniles may prevent the resident species from maintaining its population at high densities, thereby freeing resources in the nursery for subsequent cohorts of juvenile white shrimp.  相似文献   

3.
When exposed to severely hypoxic water, many teleosts skim the better oxygenated surface layer (aquatic surface respiration, ASR). Information is scarce concerning the thresholds triggering ASR and its cardio-respiratory consequences. To assess the ambient conditions leading to ASR and to evaluate its effects on cardio-respiratory function, we exposed specimens of Piaractus mesopotamicus to gradual hypoxia (water oxygen tension ranging from 120 to 10 torr) with or, alternatively, without access to the surface. Concurrently, ASR, cardiac and respiratory frequencies, O2 uptake and gill ventilation were monitored. With surface access, ASR developed below the critical tension for O2 uptake (34 torr) by normal gill ventilation. Moreover, the time spent in ASR increased with prolonged hypoxic exposure to a maximum of 95% of total time. Without surface access, the species exhibited hypoxic bradycardia, that had not occurred in the group with fully developed ASR. Even without ASR, P. mesopotamicus recovered readily from hypoxic exposure, showing that this species possesses a number of mechanisms to cope with environmental hypoxia.  相似文献   

4.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO 2>150 mmHg) and three levels of hypoxia (inhalant water PO 2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - C aO2, C vO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - P aCO2, P vCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - P aO2, P vO2, P iO2, P cO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

5.
On reaching the respiratory compensation point (RCP) during rapidly increasing incremental exercise, the ratio of minute ventilation (VE) to CO2 output (VCO2) rises, which coincides with changes of arterial partial pressure of carbon dioxide (P aCO2). Since P aCO2 changes can be monitored by transcutaneous partial pressure of carbon dioxide (PCO2,tc) RCP may be estimated by PCO2,tc measurement. Few available studies, however, have dealt with comparisons between PCO2,tc threshold (T AT) and lactic, ventilatory or gas exchange threshold (V AT), and the results have been conflicting. This study was designed to examine whether this threshold represents RCP rather than V AT. A group of 11 male athletes performed incremental excercise (25 W · min–1) on a cycle ergometer. The PCO2,tc at (44°C) was continuously measured. Gas exchange was computed breath-by-breath, and hyperaemized capillary blood for lactate concentration ([la]b) and P aCO2 measurements was sampled each 2 min. The T AT was determined at the deflection point of PCO2,tc curve where PCO2,tc began to decrease continuously. The V AT and RCP were evaluated with VCO2 compared with oxygen uptake (VO2) and VE compared with the VCO2 method, respectively. The PCO2,tc correlated with P aCO2 and end-tidal PCO2. At T AT, power output [P, 294 (SD 40) W], VO2 [4.18 (SD 0.57)l · min–1] and [la] [4.40 (SD 0.64) mmol · l–1] were significantly higher than those at V AT[P 242 (SD 26) W, VO2 3.56 (SD 0.53) l · min–1 and [la]b 3.52 (SD 0.75), mmol · l–1 respectively], but close to those at RCP [P 289 (SD 37) W; VO2 3.97 (SD 0.43) l · min and [la]b 4.19 (SD 0.62) mmol · l–1, respectively]. Accordingly, linear correlation and regression analyses showed that P, VO2 and [la]b at T AT were closer to those at RCP than at V AT. In conclusion, the T AT reflected the RCP rather than V AT during rapidly increasing incremental exercise.  相似文献   

6.
Summary Cardiac output was measured by the thermodilution method in three young harbor seals, at rest and while swimming up to the maximum effort for which they could be trained. Stroke volume was determined by counting heart rate simultaneously with determination of cardiac output. Cardiac outputs varied widely between surface breathing (7.8 ml · kg–1 · s–1) and breath-holding while swimming under water (1.8 ml · kg–1 · s–1). Stroke volume while at the surface was almost twice the volume white submerged. Surface cardiac output was always near maximal despite work effort, whereas submerged cardiac output gradually increased at higher work efforts. The cardiovascular performance of seals at the maximum MO2 we could induce from them is equivalent to that of the domestic goat.Abbreviations CO Cardiac output - HR Heart rate - SV Stroke volume - MO 2 Metabolic rate - FS Forced sumersion - V Velocity - C DF Frontal drag coefficient - CV Cardiovascular Present address: Institute of Marine Science, University of Alaska, Fairbanks, AK, USA  相似文献   

7.
Changes in heart rate (f H) and cloacal ventilation frequency (f C) were investigated in the Fitzroy turtle, Rheodytes leukops, under normoxic (17.85 kPa) and hypoxic (3.79 kPa) conditions at 25°C. Given R. leukops’ high reliance on aquatic respiration via the cloacal bursae, the objective of this study was to examine the effect of varying aquatic PO2 levels upon the expression of a bradycardia in a freely diving, bimodally respiring turtle. In normoxia, mean diving f H and f C for R. leukops remained constant with increasing submergence length, indicating that a bradycardia failed to develop during extended dives of up to 3 days. Alternatively, exposure to aquatic hypoxia resulted in the expression of a bradycardia as recorded by a decreasing mean diving f H with increasing dive duration. The observed bradycardia is attributed to a hypoxic-induced metabolic depression, possibly facilitated by a concurrent decrease in f C. Results suggest that R. leukops alters its strategy from aquatic O2 extraction via cloacal respiration in normoxia to O2 conservation when exposed to aquatic hypoxia for the purpose of extending dive duration. Upon surfacing, a significant tachycardia was observed for R. leukops regardless of aquatic PO2, presumably functioning to rapidly equilibrate blood and tissue gas tensions with alveolar gas to reduce surfacing duration.  相似文献   

8.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   

9.
Arterial blood pressure was monitored in voluntarily diving tufted ducks. Mean arterial blood pressure while diving increased during the pre-dive tachycardia, fell to resting levels on submersion, then gradually increased before peaking on surfacing. Estimated total peripheral resistance fell during the pre-dive and post-dive tachycardia, presumably to allow the oxygen stores to be loaded and replenished respectively and/or for carbon dioxide levels to be reduced. Changes in mean arterial blood pressure and total peripheral resistance suggest that peripheral vasoconstriction occurs in some vascular beds during a dive. An increase in arterial blood pressure (and therefore perfusion pressure) may be employed to increase blood flow and oxygen delivery to the active leg muscles.Abbreviations ecg Electrocardiogram, f H, heart rate - MABP mean arterial blood pressure - P b blood pressure(s) - TPR total peripheral resistance - V b cardiac output  相似文献   

10.
Summary The isolated retina of the terrestrial crab Ocypode ryderi exhibits a pronounced lactate production in spite of being supplied with sufficient O2 (140 torr). To determine whether this lactate production is caused by hypoxic areas in the tissue or represents aerobic glycolysis, oxygen partial pressure and pH measurements with two-channel glass microelectrodes and additional biochemical analyses were carried out on this organ. Distinct profiles were obtained for O2 partial pressure and pH inside the tissue. At a depth of 200 m different O2 partial pressure levels could be observed depending on the O2 partial pressure in the medium (85 torr at 280 torr and 36 torr at 130 torr, respectively). The extracellular pH displays a similar pattern; it reaches a stable value of 7.15 at 100 m inside the tissue. Lowering bath O2 partial pressure from 280 torr to about 15 torr (hypoxia) induces a decrease of the O2 partial pressure in the tissue with different time-courses for different tissue depths. However, hypoxia did not change the extracellular pH. Addition of antimycin A (100 mol · 1-1) to the medium abolishes the O2 partial pressure gradient and the delayed recovery of the tissue O2 partial pressure after hypoxia. These results and the biochemical data suggest that in the crab retina a high glycolytic activity occurs simultaneously with oxydative carbohydrate degradation (aerobic glycolysis).Abbreviations AEC Atkinson energy charge - DC bioelectric potential - dw dry weight - HEPES N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulphonic acid] - PCO2 carbon dioxide partial pressure - PO2 oxygen partial pressure - P tO2 oxygen partial pressure inside the tissue - P mO2 oxygen partial pressure in the medium - pHt pH inside the tissue - pHm pH in the superfusion medium  相似文献   

11.
The role of the vagus nerve in determining heart rate (f H) and cardiorespiratory interactions was investigated in a neotropical fish, Piaractus mesopotamicus. During progressive hypoxia f H initially increased, establishing a 1:1 ratio with ventilation rate (f R). Subsequently there was a hypoxic bradycardia. Injection of atropine abolished a normoxic inhibitory tonus on the heart and the f H adjustments during progressive hypoxia, confirming that they are imposed by efferent parasympathetic inputs via the vagus nerve. Efferent activity recorded from the cardiac vagus in lightly anesthetized normoxic fish included occasional bursts of activity related to spontaneous changes in ventilation amplitude, which increased the cardiac interval. Restricting the flow of aerated water irrigating the gills resulted in increased respiratory effort and bursts of respiration-related activity in the cardiac vagus that seemed to cause f H to couple with f R. Cell bodies of cardiac vagal pre-ganglionic neurons were located in two distinct groups within the dorsal vagal motor column having an overlapping distribution with respiratory motor-neurons. A small proportion of cardiac vagal pre-ganglionic neurons (2%) was in scattered positions in the ventrolateral medulla. This division of cardiac vagal pre-ganglionic neurons into distinct motor groups may relate to their functional roles in determining cardiorespiratory interactions.  相似文献   

12.
Eduard Hurt  Günter Hauska   《BBA》1982,682(3):466-473
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6.  相似文献   

13.
Circulatory levels of triiodothyronine (T3) and thyroxine (T4) and their kinetics were studied in rabbits exposed to intermittent hypobaric hypoxia (5200 m, 395 mm Hg,PO2 83 mm Hg) 6 h daily for 5 weeks in a decompression chamber maintained at room temperature of 22°–24° C. Kinetics of T3 and T4 were studied on days 21 and 28 of hypoxic exposure. The T3 and T4 values were found to be significantly lower on day 8 of exposure to hypoxia compared to the pre-exposure values. The decreased levels were maintained throughout the entire period of hypoxic stress. The metabolic clearance rate, production rate, distribution space and extrathyroidal T3 and T4 pools were significantly decreased in animals under hypoxic stress compared to the control animals. The decline in thyroid hormone levels and their production in rabbits under hypoxic stress indicate an adaptive phenomenon under conditions of low oxygen availability.  相似文献   

14.
The immune response of shrimp exposed to severe hypoxia, 1 mg O2ml−1for 24 h, was measured in terms total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase activity (PO) and respiratory burst by NBT reduction. Results showed that hypoxia induced a significant decrease (P<5%) of the THC due to a significant decrease of semi-granular cells (SGC) (P<5%) and hyaline cells (HC) (P<5%). There was also a decrease in the NBT reduction. On the other hand, PO activity increased significantly (P<1%) and seemed to be related to a lower amount of plasma inhibitors regulating the prophenoloxidase system. Experimental infection with a virulentVibrio alginolyticuswas carried out by intramuscular injection of 2×104colony forming units (cfu) per shrimp. The mortality of stressed shrimp was 48% while the mortality of control shrimp was 32%. This difference was significant (P<1%). The variations of immunological parameters, except for the PO activity, seem to be consistent with thein vivoresponse against the pathogenicVibrio. Coyright 1998 Academic Press  相似文献   

15.
We have attempted to investigate the correlation between the detergent-perturbed structural integrity of the Cyt b 6 f complex from the marine green alga Bryopsis corticulans and its photo-protective properties, for which the nonionic detergents n-octyl-β-d-glucopyranoside (β-OG) and n-dodecyl-β-d-maltoside (β-DM), respectively, were used for the preparation of Cyt b 6 f, and the singlet oxygen (1O2*) production as well as the triplet excited-state chlorophyll a (3Chl a*) formation and deactivation were examined by spectroscopic means. Near-infrared luminescence of 1O2 * (~1,270 nm) on photo-irradiation was detected for the β-OG preparation where the complex is mainly in oligomeric state, but not for the β-DM one in which the complex exists in dimeric form. Under anaerobic condition, photo-excitation of Chl a in the β-DM preparation generated 3Chl a* with a lower quantum yield of ΦT ~ 0.02 and a longer lifetime of ~600 μs with respect to those as in the case of β-OG preparation, ΦT ~ 0.12 and 200–300 μs. These results prove that the enzymatically active and intact Cyt b 6 f complex on photo-excitation tends to produce little 3Chl a* or 1O2 *, which implies that the pigment–protein assembly of Cyt b 6 f complex per se is crucial for photo-protection. F. Ma and X.-B. Chen contributed equally to this work.  相似文献   

16.
A study of lung gas exchange in the fresh water turtle Mauremys caspica leprosa at normal physiological body temperatures (15, 25 and 35 °C) was extended to extreme temperatures (5 and 40 °C) to determine whether the direct relationship between body temperature and ventilatory response found in many lung-breathing ectotherms including other chelonian species was maintained. From 5 to 35 °C the lung ventilation per unit of O2 uptake and CO2 removed declined with temperature. Consequently, lung CO2 partial pressure increased with temperature. Its value was maintained within narrow limits at each thermal constant, suggesting a suitable control throughout the complete ventilatory cycle. At 40 °C the ventilatory response showed the opposite trend. The ratios of ventilation to lung gas exchange increased compared to their values at 35 °C. The impact of this increased breathing-lowering the estimated mean alveolar CO2 partial pressure-was nevertheless less than expected due to an increase in calculated physiological dead space. This suggests that the relative hyperventilation in response to hyperthermia found in Mauremys caspica leprosa is related to evaporative heat loss.Abbreviations BTPS body temperature, ambient pressure, saturated with water vapour - CTM critical thermal maximum - FN2 fractional concentration of nitrogen - PA CO2or PL CO2 alveolar or lung CO2 pressure - PAO2or PLO2 alveolar or lung O2 pressure - PIO2 inspired O2 pressure - R respiratory exchange ratio - STPD standard temperature, standard pressure, dry - T a ambient temperature - T b body temperature - VA alveolar ventilation - VA/VCO2 relative alveolar ventilation (alveolar ventilation per unit of CO2 removed) - VO2 O2 uptake - VCO2 CO2 output - V D anatomical dead space volume - V D physiological dead space volume - VE/VO2 ventilatory equivalent for O2 - VE pulmonary ventilation or expiratory minute volume - VE/VCO2 ventilatory equivalent for CO2 - V T tidal volume  相似文献   

17.
The cytochrome b 6 f complex isolated from spinach chloroplast membranes can be resolved into two forms, a monomeric and a dimeric form, by centrifugation on sucrose gradients. The conversion of the dimeric form of the complex into the monomeric form could be prevented by cross-linking with the homobifunctional reagent, dithiobis(succinimidylpropionate) but not by cross-linking with disuccinimidyltartrate or glutaraldehyde. SDS-PAGE analyses of the monomeric and dimeric forms of the cytochrome complex showed the presence of specific cross-linked products in each respective form of the complex. For example, the monomeric form contained a cross-linked product of cytochrome f, cytochrome b 6 f and subunit IV while the dimeric form contained a cross-linked dimer of cytochrome b 6 f. The presence of the former in the isolated cytochrome b 6 f complex prepared by the method of Hurt and Hauska (Eur J Biochem 117: 591–599, 1981) indicates the presence of the monomer in his preparation.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSP dithiobis(succinimidylpropionate) - DST disuccinimidyltartrate  相似文献   

18.
The singlet excited state lifetime of the chlorophyll a (Chi a) in cytochrome b6f (Cyt b6f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b6f complexes from different sources (~200 and ~600 ps are the two measured results). The present study demonstrated that the singiet excited state lifetime is associated with the detergents n-dodecyl-β-D-maltoside (DDM) and n-octyl-β-D-glucopyranoside (β-OG), but has nothing to do with the different sources of Cyt b6f complexes. Compared with the Cyt b6f dissolved in β-OG, the Cyt b6f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, ~200 ps, of the Chl a in Cyt b6f complex in DDM is closer to the true in vivo.  相似文献   

19.
Ventilation frequency, opercular pressure amplitude, heart rate, dorsal aortic pressure, arterial pH, arterial O2 tension, and plasma catecholamine levels were recorded in rainbow trout, Oncorhynchus mykiss, during normoxia (19.7 kPa, 148 mmHg) or hyperoxia (51.2 kPa, 384 mmHg) after injection of various concentrations of catecholamines. In normoxic fish, adrenaline injection resulted in a depression of arterial O2 tension, hypoventilation due to a drop in ventilation frequency, and a drop in heart rate, while dorsal aortic pressure increased. Noradrenaline depressed ventilation frequency, but opercular pressure amplitude increased to a far greater extent, and dorsal aortic pressure increased. During hyperoxia, adrenaline injection lowered ventilation frequency, opercular amplitude and heart rate, but dorsal aortic pressure increased. The stimulatory effects of noradrenaline on ventilation were abolished during hyperoxia, but the cardiac responses were similar to those seen during normoxia. These results indicate that catecholamines can modify the ventilatory output from the respiratory centre, and modification of ventilation frequency can occur independently of opercular pressure amplitude.Abbreviations f g ventilation frequency - HPLC high performance liquid chromatography - P op opercular pressure amplitude - f h heart rate - P DA dorsal aortic pressure - pHa arterial pH - P aO2 arterial oxygen tension - PO2 oxygen tension  相似文献   

20.
Summary The autonomic nervous and possible adrenergic humoral control of blood pressure and heart rate during hypoxia was investigated in Atlantic cod. The oxygen tension in the water was reduced to 4.0–5.3 kPa (i.e.. PwO2=30–40 mmHg), and the fish responded with an immediate increase in ventral and dorsal aortic blood pressure (P va P da), as well as a slowly developing bradycardia. The plasma concentrations of circulating catecholamines increased during hypoxia with a peak in the plasma level of noradrenaline occurring before the peak for adrenaline. Bretylium was used as a chemical tool to differentiate between neuronal and humoral adrenergic control of blood pressure and heart rate (f H) during hypoxia. The increase in P va and P da in response to hypoxia was strongly reduced in bretylium-treated cod, which suggests that adrenergic nerves are responsible for hypoxic hypertension. In addition, a small contribution by circulating catecholamines to the adrenergic tonus affecting P va during hypoxia was suggested by the decrease in P va induced by injection of the -adrenoceptor antagonist phentolamine. The cholinergic and the adrenergic tonus affecting heart rate were estimated by injections of atropine and the -adrenoceptor antagonist sotalol. The experiments demonstrate an increased cholicholinergic as well as adrenergic tonus on the heart during hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号