共查询到20条相似文献,搜索用时 15 毫秒
1.
Piotr ukasik Margriet van Asch Huifang Guo Julia Ferrari H. Charles J. Godfray 《Ecology letters》2013,16(2):214-218
The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. 相似文献
2.
Sneh B 《Biotechnology advances》1998,16(1):1-32
Nonpathogenic (avirulent), or low virulent (hypovirulent) strains are capable of colonizing infection site niches on the plants' surfaces and protecting susceptible plants against their respective pathogens. Such phenomena have been demonstrated for a considerable number of plant pathogens. The modes of protection differ among the nonpathogenic strains, and one strain can protect by more than one mechanism. Competition for infection sites, or for nutrients (such as carbon, iron) as well as induction of the host plant resistance, have been demonstrated for several pathogens such as Rhizoctonia spp., Fusarium spp. and Pythium spp. Mycoparasitism was shown for Pythium spp. Transmission of double stranded RNA mycoviruses from hypovirulent strains to virulent strains renders the virulent strains hypovirulent. Chestnut trees infected with the chestnut blight pathogen, Cryphonectria (Endothia) parasitica, recovered after inoculation with transmissible hypovirulent strains. Nonpathogenic strains of various fungi are potential candidates for development of biocontrol preparations. Some strains are already used in Agriculture. 相似文献
3.
There is growing evidence to suggest that hosts can alter their dietary intake to recoup the specific resources involved in mounting effective resistance against parasites and pathogens. We examined macronutrient ingestion and disease-resistance in the Australian plague locust (Chortoicetes terminifera), challenged with a fungal pathogen (Metarhizium acridum) under dietary regimes varying in their relative amounts of protein and digestible carbohydrate. Dietary protein influenced constitutive immune function to a greater extent than did carbohydrate, indicating higher protein costs of mounting an immune defence than carbohydrate or overall energy costs. However, it appears that increased immune function, as a result of greater protein ingestion, was not sufficient to protect locusts from fungal disease. We found that locusts restricted to diets high in protein (P) and low in carbohydrate (C) were more likely to die of a fungal infection than those restricted to diets with a low P:C ratio. We hypothesise that the fungus is more efficient at exploiting protein in the insect’s haemolymph than the host is at producing immune effectors, tipping the balance in favour of the pathogen on high-protein diets. When allowed free-choice, survivors of a fungus-challenge chose a less-protein-rich diet than those succumbing to infection and those not challenged with fungus locusts. These results are contrary to previous studies on caterpillars in the genus Spodoptera challenged with bacterial and baculoviral pathogens, indicating that nutrient ingestion and pathogen resistance may be a complex interaction specific to different host species and disease agents. 相似文献
4.
Manoj Singh Manish Kumar R. Kalaivani S. Manikandan A. K. Kumaraguru 《Bioprocess and biosystems engineering》2013,36(4):407-415
Silver nanoparticles (Ag-NPs) are known to have inhibitory and fungicidal effects. Resistance against fungal infection has emerged as a major health problem in recent years, which needs great and immediate concern. Here, we report the extracellular biological synthesis of silver nanoparticles through a simple green route approach using a marine mangrove (Rhizophora mucronata) and silver nitrate. Aqueous extract of marine mangrove helped in reduction and was used as capping agent in biological synthesis. Nanoparticles were characterized using microscopy and spectroscopy techniques such as HRTEM, UV–Vis absorption spectroscopy and FTIR spectroscopy. X-ray diffraction analysis showed that the nanoparticles had face centered cubic structure with crystalline nature. FTIR spectroscopy showed the presence of different functional groups, such as hydroxyl and carbonyl, involved in the synthesis of nanoparticles. The antifungal activity of fluconazole and itraconazole was enhanced against the tested pathogenic fungi in the presence of Ag-NP and confirmed from increase in fold area of inhibition. This environmentally friendly method of biological synthesis can be easily integrated for various medical applications. 相似文献
5.
6.
Ying-Ning Ho Sin Yong Hoo Bo-Wei Wang Chi-Ting Hsieh Ching-Chih Lin Chi-Hui Sun Chia-Chi Peng Chih Lin Yu-Liang Yang 《The ISME journal》2021,15(6):1858
Bacteria and fungi secrete many natural products that inhibit each other’s growth and development. The dynamic changes in secreted metabolites that occur during interactions between bacteria and fungi are complicated. Pyochelin is a siderophore produced by many Pseudomonas and Burkholderia species that induces systemic resistance in plants and has been identified as an antifungal agent. Through imaging mass spectrometry and metabolomics analysis, we found that Phellinus noxius, a plant pathogen, can modify pyochelin and ent-pyochelin to an esterification product, resulting in reduced iron-chelation and loss of antifungal activity. We also observed that dehydroergosterol peroxide, the fungal metabolite, is only accumulated in the presence of pyochelin produced through bacteria–fungi interactions. For the first time, we show the fungal transformation of pyochelin in the microbial interaction. Our findings highlight the importance of understanding the dynamic changes of metabolites in microbial interactions and their influences on microbial communities.Subject terms: Microbial ecology, MetabolomicsMicroorganisms use various strategies to establish themselves within an ecological niche while facing keen competition in the environment. Natural products such as antibiotics, quorum sensing molecules, and siderophores are crucial in microbial interactions [1–3]. Certain microorganisms are equipped with uptake systems that enable them to acquire siderophores, even by those that may not produce them [4]. For example, pyochelin is a siderophore produced by many Pseudomonas and Burkholderia strains. Such bacterial strains are commonly found in soils, as endophytes, and from the rhizosphere where they may inhibit plant pathogens [5, 6].Burkholderia cenocepacia 869T2 was isolated as an endophyte and showed beneficial abilities to control banana Fusarium wilt [7]. It harbors many biosynthetic gene clusters of secondary metabolites, such as pyochelin, pyrrolnitrin, and pyrroloquinoline quinone [8]. Recently, we found that this strain could temporarily inhibit the growth of P. noxius, a fungal pathogen of brown root rot disease, which is prevalent in tropical and subtropical regions and has a wide host range covering over 200 plant species [9]. However, in the competition between fungi and bacteria, P. noxius can resist this inhibition and overwhelm bacterial colonies after 1–2 weeks under dual-culture conditions (Fig. S1). These results imply that fungi might have resistance responses and undergo metabolic changes in bacteria–fungi interactions [10]. Here we unveiled metabolic changes in the competitive interaction between B. cenocepacia 869T2 and P. noxius 2252 using the matrix-assisted laser desorption ionization-time of flight imaging mass spectrometry (MALDI-TOF IMS) [11, 12].We specifically monitored the metabolites in the inhibition region of B. cenocepacia 869T2 and P. noxius 2252 dual-culture using MALDI-TOF IMS. Several induced or enzymatically modified metabolites were detected, including m/z 275, 362, 383, and 427 (Fig. 1A). In particular, pyochelin (m/z 325), surrounding the B. cenocepacia 869T2 colony, showed asymmetric distribution in dual-culture samples. Near the P. noxius 2252 mycelia, a new metabolite with m/z 383 was detected with a complementary distribution to pyochelin (Fig. 1A). In LC-MS/MS-based molecular networking analysis [13], we found that this new metabolite structure is an esterification product of pyochelin and glycolic acid, which we named pyochelin-GA (Fig. 1B). We then constructed a pchF-null mutant strain, ΔpchF, which cannot produce pyochelin, and then dual cultured it with P. noxius. Pyochelin and pyochelin-GA were not observed in the MALDI-TOF IMS and LC-MS analysis of dual-culture samples (Fig. 1A and Fig. S2). We further inoculated P. noxius 2252 with pyochelin-GA-free extract harvested from B. cenocepacia 869T2 single culture, and the complementary distribution of pyochelin and pyochelin-GA was observed by MALDI-TOF IMS again (Fig. S3). These results demonstrated that pyochelin-GA was transformed from pyochelin by P. noxius 2252, rather than produced by B. cenocepacia 869T2 under dual-culture conditions.Open in a separate windowFig. 1Metabolic changes in the bacteria–fungi interaction.A Spatial distribution of selected mass signals (m/z) in MALDI-TOF IMS analysis of Phellinus noxius 2252 (Pn2252) dual-cultured with Burkholderia cenocepacia 869T2 (869T2) and a pchF-null mutant strain (Δ pchF). B Molecular networking analysis of pyochelin and analogs from the dual-culture sample. The red node is pyochelin, and the green node is pyochelin-GA. The structures of pyochelin, pyochelin-GA, and dehydroergosterol peroxide (DHEP), together with their mass signals in MALDI-TOF IMS, are shown. C Iron-chelating abilities of pyochelin and pyochelin-GA were evaluated by Chrome Azurol S liquid assay using different concentrations (2.5, 1.25, 0.63, 0.31, and 0.16 mM, n = 3). Proportions of siderophore units are shown in Fig. S14. D Fungal transformation of pyochelin and ent-pyochelin by treating P. noxius 2252 with ethyl acetate crude extracts of B. cenocepacia 869T2, Pseudomonas aeruginosa PAO1, and P. protegens Pf-5 for 8 h. LC-MS was used to monitor the signals of pyochelin (red), ent-pyochelin (blue), and transformation product 383 (black).The chemical structure of pyochelin-GA was further confirmed via total synthesis, NMR, and LC-MS/MS analysis (Supplementary Material and Methods, and Figs. S4–7). The purified pyochelin and pyochelin-GA were also evaluated for their iron-chelating ability. Chrome Azurol S assay indicated that pyochelin had the dose-dependent iron-chelating ability, but pyochelin-GA had lower iron-binding efficiency (Fig. 1C, Fig. S8). Pyochelin chelates iron in the extracellular medium and transports it into cells via the specific outer membrane transporter FptA. The X-ray structure of FptA-pyochelin-Fe indicated that the terminal carboxylic acid of pyochelin plays an essential role in the iron uptake ability [14, 15]. Our docking analysis suggested that the glycolic ester moiety of pyochelin-GA would affect the binding pocket shape of FptA and result in different binding properties compared to FptA-pyochelin (Fig. S9).Pyochelin and ent-pyochelin are produced independently by different biosynthetic gene clusters in Pseudomonas species [16]. To determine whether P. noxius 2252 can transform both enantiomers via this esterification process, we treated P. noxius 2252 with the extracts of pyochelin producers (P. aeruginosa PAO1 and B. cenocepacia 869T2) and an ent-pyochelin producer (P. protegens Pf-5). After 8 h of treatment, both pyochelin and ent-pyochelin were converted to pyochelin-GA (or ent-pyochelin-GA) (Fig. 1D), demonstrating this is a non-stereospecific transformation.To better understand the iron-chelating ability of pyochelin, we used pyochelin and pyochelin-GA to treat P. noxius 2252 under iron-deficiency conditions, by adding the iron chelator deferoxamine, and iron-rich conditions by adding FeCl3 (Fig. 2). Pyochelin-GA did not affect the growth of P. noxius 2252 under all conditions. However, P. noxius 2252 was more sensitive to pyochelin in iron-deficient conditions and more resistant to pyochelin in iron-rich conditions, demonstrating that iron availability directly affected the tolerance of P. noxius 2252 to pyochelin. A similar phenomenon was reported previously for Aspergillus fumigatus [17].Open in a separate windowFig. 2Pyochelin inhibition of mycelial growth of Phellinus noxius 2252 is inversely associated with iron concentration.Pyochelin-GA did not have an inhibition effect on P. noxius 2252. Potato dextrose agar (PDA) with deferoxamine (DFO; 200 and 400 µM) was used to mimic iron-deficiency conditions. Iron-rich conditions was prepared by adding FeCl3 (200 and 400 µM) in PDA. P. noxius 2252 was treated with 0.03, 0.06, 0.12, and 0.24 µmol of pyochelin or pyochelin-GA at 30 °C for 24 h. The antifungal assay was performed in two biological replicates.Using MALDI-TOF IMS analysis of the dual-culture of B. cenocepacia 869T2 and P. noxius 2252, we observed that several metabolites (e.g., m/z 275, 362, and 427) were only observed in the boundary of fungal mycelia (Fig. 1A). Although those metabolites were not detected in the dual-culture of ΔpchF and P. noxius 2252 (Fig. 1A), they were present when we treated P. noxius 2252 with pyochelin (Fig. S10). We identified the metabolite associated with m/z 427 as dehydroergosterol peroxide (DHEP) (Fig. S11), which was initially oxidized from ergosterol and dehydroergosterol [18]. Pyochelin can enhance intercellular reactive oxygen species (ROS) and ultimately disrupts membrane integrity, leading to cell death [17, 19, 20]. To clarify whether ROS induced the accumulation of DHEP, we treated P. noxius 2252 with pyochelin, pyochelin-GA, and 2,2′-bipyridyl (an iron chelator). Pyochelin and 2,2′-bipyridyl showed antifungal effects on P. noxius 2252 and induced ROS production (Fig. S12). However, the accumulation of DHEP in P. noxius 2252 was only associated with pyochelin treatment (Fig. S13). The induction of ROS in P. noxius 2252 by pyochelin and pyochelin-GA was not significantly different (Fig. S14). Therefore, we predict that pyochelin-induced accumulation of DHEP in P. noxius 2252 is independent of ROS production and iron-deficiency.Overall, we demonstrate that pyochelin transformation by fungi, in the interaction between pyochelin-producing bacteria and the plant pathogen P. noxius transforms pyochelin and ent-pyochelin into pyochelin-GA (and ent-pyochelin-GA). This product no longer functions as an iron chelator and no longer shows antifungal activity. The production of a fungal metabolite, dehydroergosterol peroxide, was induced explicitly by pyochelin through an unknown mechanism. These results highlight the importance of monitoring dynamic changes of metabolites in situ to better understand the functions and influences of metabolites on microbial community interactions. 相似文献
7.
Li HP Zhang JB Shi RP Huang T Fischer R Liao YC 《Molecular plant-microbe interactions : MPMI》2008,21(9):1242-1248
Fusarium head blight (FHB) or scab of wheat is a devastating disease in warm and humid regions at wheat-flowering periods worldwide. Natural resistance against FHB pathogens is inadequate and the development of FHB-resistant wheat cultivars has been a challenge. Expression of pathogen-specific antibodies in plants has been proposed as a strategy for crop protection. In this study, an antibody fusion protein comprising a Fusarium-specific recombinant antibody derived from chicken and an antifungal peptide from Aspergillus giganteus was expressed in wheat as a method for protecting plants against FHB pathogens. Plants expressing the antibody fusion displayed a very significantly enhanced resistance in T2 and T3 generations upon single-floret inoculation with the macroconidia of Fusarium asiaticum, the predominant species causing FHB in China, indicating a type II resistance. Spraying inoculation further revealed an enhanced type I resistance in the transgenic wheat plants. Remarkably, more grains were produced in the transgenic plants than the nontransgenic controls. Our results demonstrated that the antibody fusion protein may be used as an effective tool for the protection of crops against FHB pathogens. 相似文献
8.
Wood-based composites such as oriented strand board (OSB) are principle framing elements in building construction in North
America. However, these materials are often affected by moulds in wet or humid environmental conditions. A common control
method for prevention of mould growth on panels is preservative treatment of panels with various pesticides or chemicals.
In recent years, environmentally friendly pest control methods are required because of environmental issue. This research
aimed to develop a biological technology to protect OSB against mould infection by post-treatment of panels with natural extracts
from fungal antagonists. In this study, the culture metabolites of a fungal antagonist, Phaeotheca dimorphospora DesRochers & Ouellette, were extracted, and the antibiotic activity of the extracts was tested in Petri plates against various
moulds and decay fungi. The OSB panels were then dip-treated with the extracts and exposed to a humid environment for mould
growth testing in a period of 8 weeks. The results showed that the mycelia growth of all fungi tested (moulds, white-rot and
brown-rot fungi) was inhibited by the extracts of P. dimorphospora on agar plates. Panel samples dipped with the fungal extracts in acetone got little mould growth on them, whereas untreated
control panels and those samples treated with acetone alone were seriously affected by various moulds. 相似文献
9.
Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes,and correlation with antifungal activity 总被引:8,自引:0,他引:8
Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity. 相似文献
10.
A broad spectrum of medicinal plants was used as traditional remedies for various infectious diseases. Fungal infectious diseases have a significant impact on public health. Fungi cause more prevalent infections in immunocompromised individuals mainly patients undergoing transplantation related therapies, and malignant cancer treatments. The present study aimed to investigate the in vitro antifungal effects of the traditional medicinal plants used in India against the fungal pathogens associated with dermal infections. Indian medicinal plants (Acalypha indica, Lawsonia inermis Allium sativum and Citrus limon) extract (acetone/crude) were tested for their antifungal effects against five fungal species isolated from skin scrapings of fungal infected patients were identified as including Alternaria spp., Curvularia spp., Fusarium spp., Trichophyton spp. and Geotrichum spp. using well diffusion test and the broth micro dilution method. All plant extracts have shown to have antifungal efficacy against dermal pathogens. Particularly, Allium sativum extract revealed a strong antifungal effect against all fungal isolates with the minimum fungicidal concentration (MFC) of 50–100 μg/mL. Strong antifungal activity against Curvularia spp., Trichophyton spp., and Geotrichum spp. was also observed for the extracts of Acalypha indica, and Lawsonia inermis with MFCs of 50–800 μg/mL respectively. The extracts of Citrus limon showed an effective antifungal activity against most of the fungal strains tested with the MFCs of 50–800 μg/mL. Our research demonstrated the strong evidence of conventional plants extracts against clinical fungal pathogens with the most promising option of employing natural-drugs for the treatment of skin infections. Furthermore, in-depth analysis of identifying the compounds responsible for the antifungal activity that could offer alternatives way to develop new natural antifungal therapeutics for combating resistant recurrent infections. 相似文献
11.
Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco 总被引:25,自引:1,他引:25
Guido Jach Birgit Görnhardt John Mundy Jürgen Logemann Elke Pinsdorf Robert Leah Jeff Schell Christoph Maas 《The Plant journal : for cell and molecular biology》1995,8(1):97-109
cDNAs encoding three proteins from barley ( Hordeum vulgare ), a class-II chitinase (CHI), a class-II β-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani , which infects a range of plant species including tobacco. To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated. Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/ CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack when compared with the protection levels obtained with corresponding isogenic lines expressing a single barley transgene to a similar level. The data indicate synergistic protective interaction of the co-expressed anti-fungal proteins in vivo . 相似文献
12.
《Critical reviews in biotechnology》2013,33(3):231-241
Fungal diseases of plants continue to contribute to heavy crop losses in spite of the best control efforts of plant pathologists. Breeding for disease-resistant varieties and the application of synthetic chemical fungicides are the most widely accepted approaches in plant disease management. An alternative approach to avoid the undesired effects of chemical control could be biological control using antifungal bacteria that exhibit a direct action against fungal pathogens. Several biocontrol agents, with specific fungal targets, have been registered and released in the commercial market with different fungal pathogens as targets. However, these have not yet achieved their full commercial potential due to the inherent limitations in the use of living organisms, such as relatively short shelf life of the products and inconsistent performance in the field. Different mechanisms of action have been identified in microbial biocontrol of fungal plant diseases including competition for space or nutrients, production of antifungal metabolites, and secretion of hydrolytic enzymes such as chitinases and glucanases. This review focuses on the bacterial chitinases that hydrolyze the chitinous fungal cell wall, which is the most important targeted structural component of fungal pathogens. The application of the hydrolytic enzyme preparations, devoid of live bacteria, could be more efficacious in fungal control strategies. This approach, however, is still in its infancy, due to prohibitive production costs. Here, we critically examine available sources of bacterial chitinases and the approaches to improve enzymatic properties using biotechnological tools. We project that the combination of microbial and recombinant DNA technologies will yield more effective environment-friendly products of bacterial chitinases to control fungal diseases of crops. 相似文献
13.
Although the hypersensitive reaction in foliar plant diseases has been extensively described, little is clear regarding plant defense strategies in vascular wilt diseases affecting numerous economically important crops and trees. We have examined global genetic responses to Verticillium wilt in tomato (Lycopersicon esculentum Mill.) plants differing in Ve1 resistance alleles. Unexpectedly, mRNA analyses in the susceptible plant (Ve1-) based on the microarrays revealed a very heroic but unsuccessful systemic response involving many known plant defense genes. In contrast, the response is surprisingly low in plants expressing the Ve1+ R-gene and successfully resisting the pathogen. Similarly, whole-cell protein analyses, based on 2D gel electrophoresis and mass spectrometry, demonstrate large systemic increases in a variety of known plant defense proteins in the stems of susceptible plants but only modest changes in the resistant plant. Taken together, the results indicate that the large systemic increases in plant defense proteins do not protect the susceptible plant. Indeed, since a number of the highly elevated proteins are known to participate in the plant hypersensitive response as well as natural senescence, the results suggest that some or all of the disease symptoms, including ultimate plant death, actually may be the result of this exaggerated plant response. 相似文献
14.
An artificial selection experiment designed to explore the evolution of resistance to a fungal pathogen, Beauveria bassiana, in Drosophila melanogaster is reported here. The experiment was designed to test whether there is sufficient additive genetic variation in this trait for increased resistance to evolve, and, if so, whether there are correlated responses that might represent a cost to defence. After 15 generations of selection, flies from selected lines did not have higher overall fitness after infection compared with control lines. The response to selection for resistance against this pathogen is thus much weaker than against other species, in particular, parasitoids. There was, however, evidence for increased late-life fecundity in selected lines, which may indicate evolved tolerance of fungal infection. This increase was accompanied by reduced early-life fitness, which may reflect the well-known trade-off between early and late reproduction. In the absence of fungal infection, selected flies had lower fitness than control flies, and the possibility that this is also a trade-off with increased tolerance is explored. 相似文献
15.
Caspar Langenbach Holger Schultheiss Martin Rosendahl Nadine Tresch Uwe Conrath Katharina Goellner 《Plant biotechnology journal》2016,14(2):699-708
Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR‐linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR‐linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases. 相似文献
16.
Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen revealed by proteomic analysis 总被引:1,自引:0,他引:1
How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H(2)O(2)) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H(2)O(2)-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H(2)O(2)-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F(1)F(0) ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H(2)O(2)-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H(2)O(2) stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H(2)O(2). 相似文献
17.
18.
Cryptococcus is a globally distributed human fungal pathogen that primarily afflicts immunocompromised individuals. How and why this human fungal pathogen associates with plants and how this environmental niche influences its life cycle remains a mystery. We established Cryptococcus-Arabidopsis and Cryptococcus-Eucalyptus systems and discovered that Cryptococcus proliferates and mates on plant surfaces. Mating efficiency of C. gattii was markedly enhanced on plants and myo-inositol and indole acetic acid were specific plant products that stimulated mating. On Arabidopsis, dwarfing and chlorosis were observed following infection with a fungal mixture of two opposite mating-type strains, but not with either mating-type alone. This infection process is countered by the plant jasmonate-mediated defense mechanism. These findings reveal that Cryptococcus can parasitically interact with plants to complete its sexual cycle, which may impact an understanding of the origin and evolution of both plant and animal fungal pathogens in nature. 相似文献
19.
Transgenic tobacco plants expressing a cowpea trypsin inhibitor gene have enhanced levels of insect resistance to a variety of insect pests. Furthermore, insect bioassay has shown the cowpea trypsin inhibitor to have anti-metabolic activity to insect pests of the orders Lepidoptera, Coleoptera and Orthoptera. The advantages and disadvantages of this approach to developing insect resistant crops is discussed in relationship to other methods, including conventional plant breeding and chemical control. Eventually it is hoped that African farmers will benefit from this industrially sponsored research. 相似文献
20.
AIM: To identify antimicrobial peptides with high lytic activity against Rhizoctonia solani strain LR172, causal agent of rice sheath blight and aerial blight of soyabeans in the US. METHODS AND RESULTS: Among 12 natural and synthetic antimicrobial peptides tested in vitro, the wheat-seed peptide, purothionin, showed the strongest inhibitory activity that was similar to the antifungal antibiotics, nystatin and nikkomycin Z. Cecropin B, a natural peptide from cecropia moth, and synthetic peptide D4E1 produced the highest inhibitory activity against R. solani among linear peptides. Membrane permeabilization levels strongly correlated with antifungal activity of the peptides. Noticeable changes in membrane integrity were observed at concentrations of >/=0.5 micromol l(-1) for purothionin, 2 micromol l(-1) for cecropin B, D4E1, D2A21, melittin, and phor21, and 8 micromol l(-1) for magainin II and phor14. An increase of nuclear membrane permeabilization was observed in fungal cells treated with cecropin B, but not with purothionin. Diffusion of nuclear content was observed by fluorescent microscopy 10 min after adding a lethal concentration of cecropin B. Evaluation by electron microscopy confirmed severe cytoplasmic degradation and plasma membrane vesiculation. Purothionin and cecropin B were the most stable against proteolytic degradation when added to liquid cultures of R. solani. CONCLUSIONS: Purothionin, cecropin B, D4E1 and phor21 were shown to exhibit high in vitro lytic activity against R. solani strain LR172 for rice and soyabean. These peptides are greater than 16 amino acids long and rapidly increase fungal membrane permeabilization. Resistance to proteolysis is important for sufficient antifungal activity of antimicrobial peptides. SIGNIFICANCE AND IMPACT OF THE STUDY: Selected antimicrobial peptides offer an attractive alternative to traditional chemicals that could be utilized in molecular breeding to develop crops resistant to rice sheath blight and aerial blight of soyabean. 相似文献